×

Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. (English) Zbl 1512.74031


MSC:

74G60 Bifurcation and buckling
74K25 Shells
74F05 Thermal effects in solid mechanics
74E30 Composite and mixture properties
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] Jawaid, M.; Khalil, H., Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review, Carbohydrate Polymers, 86, 1, 1-18 (2011)
[2] Sun, J. B.; Xu, X. S.; Lim, C. W., Accurate symplectic space solutions for thermal buckling of functionally graded cylindrical shells, Composites Part B: Engineering, 55, 208-214 (2013)
[3] Maier, A.; Schmidt, R.; Oswald-Tranta, B.; Schledjewski, R., Non-destructive thermography analysis of impact damage on large-scale CFRP automotive parts, Materials, 7, 1, 413-429 (2014)
[4] Bachmann, J.; Hidalgo, C.; Bricout, S., Environmental analysis of innovative sustainable composites with potential use in aviation sector: a life cycle assessment review, Science China: Technological Sciences, 60, 9, 1301-1317 (2017)
[5] Karatas, M. A.; Gokkaya, H., A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials, Defence Technology, 14, 4, 318-326 (2018)
[6] Salvetat-Delmotte, J. P.; Rubio, A., Mechanical properties of carbon nanotubes: a fiber digest for beginners, Carbon, 40, 10, 1729-1734 (2002)
[7] Lim, C. W.; Yang, Y., Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and velocity enhancement effects, Journal of Mechanics of Materials and Structures, 5, 3, 459-476 (2010)
[8] Yan, J. W.; Liew, K. M.; He, L. H., Analysis of single-walled carbon nanotubes using the moving Kriging interpolation, Computer Methods in Applied Mechanics and Engineering, 229, 56-67 (2012) · Zbl 1253.74126
[9] Ghasemi, H.; Rafiee, R.; Zhuang, X.; Muthu, J.; Rabczuk, T., Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling, Computational Materials Science, 85, 295-305 (2014)
[10] Jia, P.; Lim, C. W., Thermal-acoustic wave generation and propagation using suspended carbon nanotube thin film in fluidic environments, Journal of Applied Mechanics: Transactions of the ASME, 83, 9, 091007 (2016)
[11] Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S., Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy, Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 452, 657-664 (2007)
[12] Park, J. G.; Keum, D. H.; Lee, Y. H., Strengthening mechanisms in carbon nanotube-reinforced aluminum composites, Carbon, 95, 690-698 (2015)
[13] Thostenson, E. T.; Ren, Z. F.; Chou, T. W., Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61, 13, 1899-1912 (2001)
[14] Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’Ko, Y. K., Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, 44, 9, 1624-1652 (2006)
[15] Shariati, A.; Ghabussi, A.; Habibi, M.; Safarpour, H.; Safarpour, M.; Tounsi, A.; Safa, M., Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation, Thin-Walled Structures, 154, 106840 (2020)
[16] Maharjan, A.; Yu, P.; Lee, S. Y., Nonlinear dynamic and crack behaviors of carbon nanotubes-reinforced composites with various geometries, Nanotechnology Reviews, 11, 1, 1307-1321 (2022)
[17] Bakshi, S. R.; Lahiri, D.; Agarwal, A., Carbon nanotube reinforced metal matrix composites: a review, International Materials Reviews, 55, 1, 41-64 (2010)
[18] Tao, F.; Salmeron, M., Insitu studies of chemistry and structure of materials in reactive environments, Science, 331, 6014, 171-174 (2011)
[19] BIRMAN, V. and BYRD, L. W. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60(1-6), 195-216 (2007)
[20] Shen, H. S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91, 1, 9-19 (2009)
[21] Sciuva, M. D.; Sorrenti, M., Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined zigzag theory, Composite Structures, 227, 111324 (2019)
[22] Zghal, S.; Frikha, A.; Dammak, F., Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes, Applied Mathematics and Mechanics, 41, 8, 1227-1250 (2020) · Zbl 1457.74159
[23] Civalek, O.; Jalaei, M. H., Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions, Aerospace Science and Technology, 99, 105753 (2020)
[24] Mallek, H.; Jrad, H.; Wali, M.; Dammak, F., Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory, Engineering with Computers, 37, 2, 1389-1407 (2021)
[25] Garg, A.; Chalak, H. D.; Zenkour, A. M.; Belarbi, M. O.; Sahoo, R., Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore, Thin-Walled Structures, 170, 108626 (2022)
[26] Xu, C.; Li, Y.; Lu, M.; Dai, Z., Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity, Applied Mathematics and Mechanics, 43, 3, 355-370 (2022) · Zbl 1496.74060
[27] Calhoun, P. R.; Dadeppo, D. A., Nonlinear finite element analysis of clamped arches, Journal of Structural Engineering, 109, 3, 599-612 (1983)
[28] Hodges, D. H., Non-linear inplane deformation and buckling of rings and high arches, International Journal of Non-Linear Mechanics, 34, 4, 723-737 (1999) · Zbl 1342.74064
[29] Pi, Y. L.; Bradford, M. A.; Uy, B., In-plane stability of arches, International Journal of Solids and Structures, 39, 1, 105-125 (2002) · Zbl 1037.74020
[30] Bateni, M.; Eslami, M. R., Non-linear in-plane stability analysis of FGM circular shallow arches under central concentrated force, International Journal of Non-Linear Mechanics, 60, 58-69 (2014)
[31] Yang, Z. C.; Liu, A. R.; Pi, Y. L.; Fu, J. Y.; Gao, Z. K., Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study, Journal of Sound and Vibration, 487, 115622 (2020)
[32] Yang, Z. C.; Liu, A. R.; Lai, S. K.; Safaei, B.; Lyu, J. E.; Huang, Y. H.; Fu, J. Y., Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches, Engineering Structures, 250, 113243 (2022)
[33] Yang, Z. C.; Wu, D.; Yang, J.; Lai, S. K.; Lyu, J. E.; Liu, A. R.; Fu, J. Y., Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load, Thin-Walled Structures, 166, 108103 (2021)
[34] Shi, Z. Y.; Yao, X. L.; Pang, F. Z.; Wang, Q. S., A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints, Composite Structures, 182, 420-434 (2017)
[35] Zhang, Y. Y.; Zhang, B.; Shen, H. M.; Wang, Y. X.; Zhang, X.; Liu, J., Nonlinear bending analysis of functionally graded CNT-reinforced shallow arches placed on elastic foundations, Acta Mechanica Solida Sinica, 33, 2, 164-186 (2020)
[36] Babaei, H., Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation, Applied Mathematics and Computation, 413, 126606 (2022) · Zbl 1510.74042
[37] Wu, H.; Kitipornchai, S.; Yang, J., Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections, Smart Materials and Structures, 25, 9, 095022 (2016)
[38] Torabi, J.; Ansari, R.; Hassani, R., Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory, European Journal of Mechanics A: Solids, 73, 144-160 (2019) · Zbl 1406.74265
[39] Khosravi, S.; Arvin, H.; Kiani, Y., Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment, International Journal of Mechanical Sciences, 164, 105187 (2019)
[40] Pi, Y. L.; Bradford, M. A., Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading, International Journal of Non-Linear Mechanics, 44, 9, 975-989 (2009) · Zbl 1203.74049
[41] Pi, Y. L.; Trahair, N. S., In-plane inelastic buckling and strengths of steel arches, Journal of Structural Engineering, 122, 7, 734-747 (1996)
[42] Shenas, A. G.; Malekzadeh, P.; Ziaee, S., Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment, Composite Structures, 162, 325-340 (2017)
[43] Tang, Y.; Tang, F.; Zheng, J.; Li, Z., In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields, Engineering Structures, 239, 112268 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.