×

On the dynamics and optimal control of a mathematical model of neuroblastoma and its treatment: insights from a mathematical model. (English) Zbl 07880944

Summary: Celyvir is an advanced therapy medicine, consisting of mesenchymal stem cells (MSCs) containing the oncolytic virus ICOVIR 5. This paper sets out a dynamic system which attempts to capture the fundamental relationships between cancer, the immune system and adenoviruses. Two forms of treatment were studied: continuous and periodic, the second being closer to the real situation. In the analysis of the first model, in addition to identifying the critical points, their properties and bifurcation points, a number of numerical simulations were carried out. It has thus been shown that there are bistability regimes in which Celyvir can produce an equilibrium of tumor progression, or even freedom from tumor. A sensitivity analysis was also performed to determine which parameters are most important in the system. Subsequently, an optimal control problem with nonlinear objective functional has been formulated, where the therapeutic goal is not only to minimize the size of the tumor cell population and the total cost of treatment, but also to prevent the tumor from reaching a critical size. It has been shown that the optimal control is bang-bang. With the second model, a threshold value of viral load has been identified at which the success of the treatment could be ensured. It is clear in both models that a low viral load would lead to relapse of the disease. Finally, it is shown that a periodic bang-bang regime should be used to optimize treatment with Celyvir.

MSC:

92C50 Medical applications (general)
34C25 Periodic solutions to ordinary differential equations
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
Full Text: DOI

References:

[1] Abernathy, Z., Abernathy, K. and Stevens, J., A mathematical model for tumor growth and treatment using virotherapy, AIMS Math.5 (2020) 4136-4150. · Zbl 1484.92036
[2] Álvarez Arenas Alcamí, A., Starkov, K., Calvo, G. and Belmonte-Beitia, J., Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy, Discrete Contin. Dyn. Syst. - B24 (2019) 2017-2038. · Zbl 1420.92047
[3] Andtbacka, R., Kaufman, H., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., Delman, K., Spitler, L., Puzanov, I., Agarwala, S., Milhem, M., Cranmer, L., Curti, B., Lewis, K., Ross, M., Guthrie, T., Linette, G., Daniels, G., Harrington, K. and Coffin, R., Talimogene laherparepvec improves durable response rate in patients with advanced melanoma, J. Clin. Oncol.33 (2015) 2780-2788.
[4] Bajger, P., Bodzioch, M. and Foryś, U., Singularity of controls in a simple model of acquired chemotherapy resistance, Discrete Contin. Dyn. Syst. - B24 (2019) 2039-2052. · Zbl 1420.92049
[5] Bandara, P. and Carpenter, D., Causes of cancer: Perceptions vs. the scientific evidence, Eur. J. Cancer124 (2019) 214-216.
[6] Belmonte-Beitia, J., Woolley, T., Scott, J., Maini, P. and Gaffney, E., Modelling biological invasions: Individual to population scales at interfaces, J. Theor. Biol.334 (2013) 1-12. · Zbl 1397.92091
[7] Boudali, I. and Messaoud, I., Machine learning models for toxicity prediction in chemotherapy, in Intelligent Systems Design and Applications (Springer Nature, Switzerland, 2023), pp. 350-364.
[8] Bozic, I., Reiter, J., Allen, B., Antal, T., Chatterjee, K., Shah, P., Moon, Y., Yaqubie, A., Kelly, N., Le, D., Lipson, E., Chapman, P., Diaz, L. A. Jr., Vogelstein, B. and Nowak, M., Evolutionary dynamics of cancer in response to targeted combination therapy, eLife2 (2013) 1-15.
[9] Brodeur, G., Neuroblastoma: Biological insight into a clinical enigma, Nat. Rev. Cancer3 (2003) 203-216.
[10] Bush, R. and Mosteller, F., A Mathematical Model for Simple Learning, Vol. 58 (Springer, New York, 2006), pp. 221-234.
[11] Cascallo, M., Alonso, M., Perez-Gimenez, A., Jiang, H. and Alemany, R., Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway, Mol. Ther.15 (2007) 1607-1615.
[12] Chen, X.-T., Dai, S.-Y., Zhan, Y., Yang, R., Chen, D.-Q., Li, Y., Zhou, E.-Q. and Dong, R., Progress of oncolytic virotherapy for neuroblastoma, Front. Pediatr.10 (2022) 1-17.
[13] Colli, P., Gomez, H., Lorenzo, G., Marinoschi, G., Reali, A. and Rocca, E., Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Methods Appl. Sci.31 (2021) 1419-1468. · Zbl 1473.92021
[14] Corbin, G., Klar, A., Surulescu, C., Engwer, C., Wenske, M., Nieto, J. and Soler, J., Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDES with multiple taxis, Math. Models Methods Appl.31 (2021) 177-222. · Zbl 1473.92007
[15] Cripe, T., Ngo, M., Geller, J., Louis, C., Currier, M., Racadio, J., Towbin, A., Rooney, C., Pelusio, A., Moon, A., Hwang, T.-H., Burke, J., Kirn, D., Bell, J. and Breitbach, C., Phase i study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients, Mol. Ther.23 (2014) 602-608.
[16] Darestani, N., Gilmanova, A., Al-Gazally, M., Zekiy, A., Ansari, M., Zabibah, R., Jawad, M., Al-Shalah, S., Rizaev, J., Alnassar, Y., Mohammed, N., Darvishi, M., Akhavan-Sigari, R. and Mustafa, Y., Mesenchymal stem cell-released oncolytic virus: An innovative strategy for cancer treatment, Cell Commun. Signal.21 (2023) 1-20.
[17] De Pillis, L., Radunskaya, A. and Wiseman, C., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res.65 (2005) 7950-7958.
[18] D’Onofrio, A., Tumor-immune system interaction: Modeling the tumor-stimulated proliferation of effectors and immunotherapy, Math. Models Methods Appl.16 (2011) 1375-1401. · Zbl 1094.92040
[19] Duan, Q., Zhang, H., Zheng, J. and Zhang, L., Turning cold into hot: Firing up the tumor microenvironment, Trends Cancer6 (2020) 605-618.
[20] Eftimie, R., Bramson, J. and Earn, D., Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol.73 (2010) 2-32. · Zbl 1209.92028
[21] Eftimie, R., Gillard, J. and Cantrell, D., Mathematical models for immunology: Current state of the art and future research directions, Bull. Math. Biol.78 (2016) 2091-2134. · Zbl 1361.92033
[22] Esmaeili Gouvarchin Ghaleh, H., Vakilzadeh, G., Zahiri, A. and Farzanehpour, F., Investigating the potential of oncolytic viruses for cancer treatment via MSC delivery, Cell Commun. Signal.21 (2023) 1-11.
[23] Filley, A. and Dey, M., Immune system, friend or foe of oncolytic virotherapy?Front. Oncol.7 (2017) 1-8.
[24] Folkman, J. and Kalluri, R., Cancer without disease, Nature427 (2004) 787.
[25] Franco-Luzón, L., Garcia-Mulero, S., Sanz-Pamplona, R., Melen, G., Ruano, D., Lassaletta, A., Madero, L., Gonzalez-Murillo, A. and Ramirez, M., Genetic and immune changes associated with disease progression under the pressure of oncolytic therapy in a neuroblastoma outlier patient, Cancers12 (2020) 1-17.
[26] Franco-Luzón, L., Gonzalez-Murillo, A., Alcántara-Sánchez, C., García-García, L., Tabasi, M., Huertas, A., Chesler, L. and Ramirez, M., Systemic oncolytic adenovirus delivered in mesenchymal carrier cells modulate tumor infiltrating immune cells and tumor microenvironment in mice with neuroblastoma, Oncotarget11 (2020) 347-361.
[27] García-Castro, J., Alemany, R., Cascallo, M., Martinez-Quintanilla Martinez, J., Arriero, M., Lassaletta, A., Madero, L. and Ramirez, M., Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: An exploratory study, Cancer Gene Ther.17 (2010) 476-483.
[28] J. Garcia Castro, T. Cejalvo Goyaes, A. J. Perise Barrios, S. Gambera and A. Morales-Molina, Producto de combinación que comprende una célula madre mesenquimatosa modificada y una sustancia antigénica, 2702618 (2017).
[29] García-Castro, J., Martinez-Palacio, J., Lillo, R., García-Sánchez, F., Alemany, R., Madero, L., Bueren, J. and Ramirez, M., Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors, Cancer Gene Ther.12 (2005) 341-349.
[30] García Otero, J., Álvarez Arenas Alcamí, A. and Belmonte-Beitia, J., Dynamics and analysis of a mathematical model of neuroblastoma treated with celyvir, Appl. Math. Model.110 (2022) 131-148. · Zbl 1505.92099
[31] Glendinning, P., Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations (Cambridge University Press, 1994). · Zbl 0808.34001
[32] Gray, D. and Sprent, J., Current Topics in Microbiology and Immunology, Vol. 159 (Springer-Verlag, Berlin, Heidelberg, 1990).
[33] Gross, E., Hamo, M., Estevez, D., Laskay, N., Atchley, T., Johnston, J. and Markert, J., Oncolytic virotherapies for pediatric tumors, Expert Opin. Biol. Ther.23 (2023) 987-1003.
[34] Hadryś, A., Sochanik, A., McFadden, G. and Jazowiecka-Rakus, J., Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses, Eur. J. Pharmacol.874 (2020) 1-13.
[35] Hale, J. and Koçak, H., Dynamics and Bifurcations, (Springer-Verlag, 1991). · Zbl 0745.58002
[36] Heo, J., Reid, T., Ruo, L., Breitbach, C., Rose, S., Bloomston, M., Cho, M., Lim, H., Chung, H., Kim, C., Burke, J., Lencioni, R., Hickman, T., Moon, A., Lee, Y., Kim, M., Daneshmand, M., Dubois, K., Longpre, L. and Hwang, T.-H., Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia jx-594 in liver cancer, Nat. Med.19 (2013) 329-336.
[37] Hubbard, A., Spector, L., Fortuna, G., Marcotte, E. and Poynter, J., Trends in international incidence of pediatric cancers in children under 5 years of age: 1988-2012, JNCI Cancer Spectr.3 (2019) 1-8.
[38] Italia, M., Wertheim, K., Taschner-Mandl, S., Walker, D. and Dercole, F., Mathematical model of clonal evolution proposes a personalised multi-modal therapy for high-risk neuroblastoma, Cancers15 (2023) 1-20.
[39] Jenner, A., Yun, C.-O., Kim, P. and Coster, A., Mathematical modelling of the interaction between cancer cells and an oncolytic virus: Insights into the effects of treatment protocols, Bull. Math. Biol.80 (2018) 1615-1629. · Zbl 1396.92032
[40] Kelly, E. and Russell, S., History of oncolytic viruses: Genesis to genetic engineering, Mol. Ther.15 (2007) 651-659.
[41] Khalili, A., Rivera, A., Mathis, J., Banerjee, N. S., Moon, A., Hess, A., Rocconi, R., Numnum, T., Everts, M., Chow, L., Douglas, J., Siegal, G., Zhu, Z., Bender, H., Dall, P., Stoff, A., Pereboeva, L. and Curiel, D., Mesenchymal stem cells as a vehicle for targeted delivery of crads to lung metastases of breast carcinoma, Breast Cancer Res. Treat.105 (2007) 157-167.
[42] Kirschner, D. and Panetta, J., Modeling immunotherapy of the tumor — Immune interaction, J. Math. Biol.37 (1998) 235-252. · Zbl 0902.92012
[43] Kuznetsov, V., Makalkin, I., Taylor, M. and Perelson, A., Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol.56 (1994) 295-321. · Zbl 0789.92019
[44] Laird, A. K., Dynamics of tumour growth, Br. J. Cancer13 (1964) 490-502.
[45] Lee, T., Jenner, A. L., Kim, P. S. and Lee, J., Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy, Math. Biosci. Eng.17 (2020) 2361-2383. · Zbl 1470.92146
[46] Lemos de Matos, A., Franco, L. and Mcfadden, G., Oncolytic viruses and the immune system: The dynamic duo, Mol. Ther.-Methods Clin. Dev.17 (2020) 349-358.
[47] León-Triana, O., Perez-Martinez, A., Ramirez, M. and Pérez-García, V., Dual-target CAR-Ts with on- and off-tumour activity may override immune suppression in solid cancers: A mathematical proof of concept, Cancers13 (2021) 1-20.
[48] León-Triana, O., Sabir, S., Calvo, G., Belmonte-Beitia, J., Chulián, S., Martínez-Rubio, A., Rosa, M., Perez-Martinez, A., Ramirez, M. and Pérez-García, V., CAR T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from mathematical models, Commun. Nonlinear Sci. Numer. Simul.94 (2021) 1-21. · Zbl 1461.92043
[49] Li, X., Bohner, M. and Wang, C.-K., Impulsive differential equations: Periodic solutions and applications, Automatica52 (2015) 173-178. · Zbl 1309.93074
[50] López-Lara Martín, F., Gónzalez San Segundo, C., Santos Miranda, J. A. and Sanz Rubiales, A., Manual de Oncología Clínica (Ediciones Universidad de Valladolid, 2000).
[51] Lou, J., Ruggeri, T. and Tebaldi, C., Modeling cancer in HIV-1 infected individuals: Equilibria, cycles and chaotic behavior, Math. Biosci. Eng.3 (2006) 313-324. · Zbl 1097.92030
[52] Mahasa, K., Depillis, L., Ouifki, R., Eladdadi, A., Maini, P., Yoon, A. and Yun, C.-O., Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy, Sci. Rep.10 (2020) 425.
[53] Mahasa, K., Eladdadi, A., Depillis, L. and Ouifki, R., Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach, PLoS ONE12 (2017) 1-25.
[54] Markert, J., Liechty, P., Wang, W., Gaston, S., Karrasch, M., Nabors, L., Markiewicz, M., Lakeman, A., Palmer, C., Parker, J., Whitley, R. and Gillespie, G., Phase Ib trial of mutant herpes simplex virus G207 inoculated pre- and post-tumor resection for recurrent GBM, Mol. Ther.17 (2008) 199-207.
[55] Melen, G., Franco-Luzón, L., Ruano, D., Gonzalez-Murillo, A., Alfranca, A., Casco, F., Lassaletta, A., Alonso, M., Madero, L., Alemany, R., García-Castro, J. and Ramirez, M., Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells, Cancer Lett.371 (2015) 161-170.
[56] Morales-Molina, A., Gambera, S., Cejalvo, T., Moreno, R., Rodríguez-Milla, M., Perisé’-Barrios, A. and García-Castro, J., Antitumor virotherapy using syngeneic or allogeneic mesenchymal stem cell carriers induces systemic immune response and intratumoral leukocyte infiltration in mice, Cancer Immunol. Immunother.67 (2018) 1589-1602.
[57] Nakagawara, A., Li, Y., Izumi, H., Muramori, K., Inada, H. and Nishi, M., Neuroblastoma, Jpn. J. Clin. Oncol.48 (2018) 214-241.
[58] Omole, R., Oluwatola, O., Akere, M., Eniafe, J., Agboluaje, E., Daramola, O., Ayantunji, Y., Omotade, T., Torimiro, N., Ayilara, M., Adeyemi, O. and Salinsile-Olayode, S., Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy, Front. Pharmacol.13 (2022) 1-29.
[59] Park, Y., Eggert, A. and Caron, H., Neuroblastoma: Biology, prognosis, and treatment, Hematol./Oncol. Clin. North Am.24 (2010) 65-86.
[60] Perko, L., Differential Equations and Dynamical Systems, (Springer, 2012).
[61] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F., The Mathematical Theory of Optimal Processes (MacMillan, 1987).
[62] Ponzoni, M., Bachetti, T., Corrias, M., Brignole, C., Pastorino, F., Calarco, E., Bensa, V., Giusto, E., Ceccherini, I. and Perri, P., Recent advances in the developmental origin of neuroblastoma: An overview, J. Exp. Clin. Cancer Res.41 (2022) 1-28.
[63] Porada, C. and Almeida-Porada, G., Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery, Adv. Drug Deliv. Rev.62 (2010) 1156-1166.
[64] Power, A. and Bell, J., Cell-based delivery of oncolytic viruses: A new strategic alliance for a biological strike against cancer, Mol. Ther.15 (2007) 660-665.
[65] Ramirez, M., García-Castro, J., Melen, G., Gonzalez-Murillo, A. and Franco-Luzón, L., Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: Novel state-of-the-art technology, Oncolytic Virother.2015 (2015) 149-155.
[66] M. Ramirez, J. Garcia-Castró, G. Melen, A. Gonzalez-Murillo and L. Franco-Luzón, Ensayo para estudiar la viabilidad de combinar viroterapia oncolítica y quimioterapia sistémica en niños y adolescentes con neuroblastoma refractario (2016) 1-14, https://www.fneuroblastoma.org/wp-content/uploads/2016/05/Celyvir_Quimioterapia.pdf.
[67] Razi, S., Haghparast, A., Khameneh, S., Ebrahimi Sadrabadi, A., Aziziyan, F., Bakhtiyari, M., Nabi-Afjadi, M., Tarhriz, V., Jalili, A. and Zalpoor, H., The role of tumor microenvironment on cancer stem cell fate in solid tumors, Cell Commun. Signal.21 (2023) 1-23.
[68] Ries, L., Trama, A., Nakata, K., Gatta, G., Botta, L. and Bleyer, A., Cancer Incidence, Survival, and Mortality Among Adolescents and Young Adults (Springer International Publishing, 2017), pp. 7-42.
[69] Rihan, F., Abdel Rahman, D., Lakshmanan, S. and Alkhajeh, A., A time delay model of tumour- immune system interactions: Global dynamics, parameter estimation, Appl. Math. Comput.232 (2014) 606-620. · Zbl 1410.92053
[70] Rincón Gila, E., Cejalvo, T., Kanojia, D., Alfranca, A., Rodríguez-Milla, M., Hoyos, R., Zhang, L., Alemany, R., Lesniak, M. and García-Castro, J., Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model, Oncotarget8 (2017) 45415-45431.
[71] J. García-Castro, G. Melen, D. Ruano, I. Mirones, E. Rincón Gila, M. Rodriguez, F. Casco and M. Ramirez, Safety and efficacy of repeated infusions of Celyvir in children with metastatic neuroblastoma, J. Cell Science & Therapy, Collaborative Congress of the International Conference on Emerging Cell Therapies 23 (2012).
[72] Rivera, Z., Escutia, C., Madonna, M. and Gupta, K., Biological insight and recent advancement in the treatment of neuroblastoma, Int. J. Mol. Sci.24 (2023) 1-18.
[73] Ruano, D., López-Martín, J., Moreno, L., Lassaletta, A., Bautista, F., Andión, M., Marqués, C., Gonzalez-Murillo, A., Melen, G., Alemany, R., Madero, L., García-Castro, J. and Ramirez, M., First-in-human, first-in-child trial of autologous mesenchymal stem cells carrying the oncolytic virus ICOVIR-5, in patients with advanced tumors, Mol. Ther.28 (2020) 1033-1042.
[74] Russell, S., Federspiel, M., Peng, K.-W., Tong, C., Dingli, D., Morice, W., Lowe, V., O’Connor, M., Kyle, R., Leung, N., Buadi, F., Rajkumar, S., Gertz, M., Lacy, M. and Dispenzieri, A., Remission of disseminated cancer after systemic oncolytic virotherapy, Mayo Clin. Proc.89 (2014) 926-933.
[75] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M. and Tarantola, S., Variance based sensitivity analysis of model output design and estimator for the total sensitivity index, Comput. Phys. Commun.181 (2010) 259-270. · Zbl 1219.93116
[76] Saravana, K., Fundamentals of Cancer Biology (Abhayam, 2023).
[77] Shalhout, S., Miller, D., Emerick, K. and Kaufman, H., Therapy with oncolytic viruses: Progress and challenges, Nat. Rev. Clin. Oncol.20 (2023) 160-177.
[78] Singh, S., Khasbage, S., Jeet, R., Sidhu, J. and Rathore, B., Chimeric antigen receptor t cell: A cancer immunotherapy, Indian journal of pharmacology54 (2022) 226-233.
[79] Tesson, M., Rae, C., Nile, D., Gaze, M. and Mairs, R., Case report targeted radiotherapy of neuroblastoma \(:\) Future directions, Integr. Cancer Sci. Ther.4 (2017) 1-2.
[80] Vijayan, D., Young, A., Teng, M. and Smyth, M., Targeting immunosuppressive adenosine in cancer, Nat. Rev. Cancer17 (2017) 709-724.
[81] Wahba, A., Wolters, R. and Foster, J., Neuroblastoma in the era of precision medicine: A clinical review, Cancers15 (2023) 4722.
[82] Wang, Y. and Xu, C., Asymptotic behavior of a three-dimensional haptotactic cross-diffusion system modeling oncolytic virotherapy, Math. Models Methods Appl.33 (2022) 2313-2335. · Zbl 1530.35126
[83] F. Weber, S. Theers, D. Surmann, U. Ligges and C. Weihs, Sensitivity analysis of ordinary differential equation models — Methods by Morris and Sobol and Application in R (Universitätsbibliothek Dortmund, 2018).
[84] White, E., Bienemann, A., Taylor, H., Castrique, E., Bunnun, C., Wyatt, M. and Gill, S., An evaluation of site-specific immune responses directed against first-generation adenoviral vectors administered by convection-enhanced delivery, J. Gene Med.13 (2011) 269-282.
[85] Yaomei, T. and Xie, D., Engineering strategies to enhance oncolytic viruses in cancer immunotherapy, Signal Transduct. Target. Ther.7 (2022) 1-21.
[86] Yin, A., Moes, D. J., Van Hasselt, C., Swen, J. and Guchelaar, H.-J., A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors, CPT: Pharmacomet. Syst. Pharmacol.8 (2019) 720-737.
[87] Yu, T., Lu, Y., Fang, J., Jiang, X., Lu, Y., Zheng, J., Shang, X., Shen, H. and Fu, P., Chimeric antigen receptor-based immunotherapy in breast cancer: Recent progress in China, Cancer (2023) 1-14.
[88] Zheng, J. and Ke, Y., Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy, Math. Models Methods Appl.33 (2023) 1875-1907. · Zbl 1519.35032
[89] Zolaly, M., Mahallawi, W., Khawaji, Z. and Alahmadi, M., The clinical advances of oncolytic viruses in cancer immunotherapy, Cureus15 (2023) 1-17.
[90] Zou, H., Mou, X. and Zhu, B., Combining of oncolytic virotherapy and other immunotherapeutic approaches in cancer: A powerful functionalization tactic, Global Challenges7 (2022) 1-16.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.