×

Predator-prey systems with defense switching and density-suppressed dispersal strategy. (English) Zbl 1511.92050

Based on the previous scholars study, the authors proposed a predator-prey system with defense switching mechanism and density-suppressed dispersal strategy. Based on the method of energy estimates and Moser iteration, the authors established the existence of global classical solutions with uniform-in-time boundedness. After that, the authors proved the global stability of co-existence equilibrium by using the Lyapunov functionals and LaSalle’s invariant principle. Numerical simulations shows that the density-suppressed dispersal may trigger the pattern formation.
At first sight, I think the paper is a two-prey one predator system, similar to the paper [S. Saha and G. Samanta, Comput. Math. Biophys. 9, No. 1, 90–113 (2021; Zbl 1472.92187)]. However, when I read carefully, the paper is about a one prey, two predator system. This seems interesting. Another interesting thing is the authors introduce the density-suppressed dispersal strategy, which is seldom considered in system described by ordinary differential equations.

MSC:

92D25 Population dynamics (general)
34D23 Global stability of solutions to ordinary differential equations

Citations:

Zbl 1472.92187

References:

[1] M, Coexistence of species in a defensive switching model, Math. Biosci., 181, 145-164 (2003) · Zbl 1014.92045 · doi:10.1016/S0025-5564(02)00152-9
[2] S, Unstable evolutionarily stable strategy and oscillation: A model of lateral asymmetry in scale-eating cichlids, Am. Nat., 144, 1001-1020 (1994) · doi:10.1086/285722
[3] P, Strategy and stationary pattern in a three-species predator-prey model, J. Differ. Equations, 200, 245-273 (2004) · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[4] Y, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Appl. Anal., 101, 81-99 (2022) · Zbl 1484.35046 · doi:10.1080/00036811.2020.1728259
[5] J, Dynamics and pattern formations in a three-species predator-prey model with two prey-taxis, J. Math. Anal. Appl., 475, 1054-1072 (2019) · Zbl 1414.35027 · doi:10.1016/j.jmaa.2019.02.071
[6] X, Dynamics and pattern formations in diffusive predator-prey models with two prey-taxis, Math. Methods Appl. Sci., 42, 4197-4212 (2019) · Zbl 1423.35201 · doi:10.1002/mma.5639
[7] P, Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search, Am. Nat., 130, 233-270 (2015) · doi:10.1086/284707
[8] H, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math., 32, 652-682 (2021) · Zbl 1505.35040 · doi:10.1017/S0956792520000248
[9] Z, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82, 1-37 (2021) · Zbl 1456.35107 · doi:10.1007/s00285-021-01562-w
[10] E, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30, 377-380 (1971) · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[11] E. Keller, L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. https://doi.org/10.1016/0022-5193(71)90050-6 · Zbl 1170.92307
[12] X, Stripe formation in bacterial systems with density-suppressed motility, Phys. Rev. Lett., 108, 198102 (2012) · doi:10.1103/physrevlett.108.198102
[13] C, Sequential establishment of stripe patterns in an expanding cell population, Science, 334, 238-241 (2011) · doi:10.1126/science.1209042
[14] J, Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing, Nonlinearity, 32, 1327-1251 (2019) · Zbl 1409.35104 · doi:10.1088/1361-6544/aaf513
[15] M, Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc., 103, 1596-1617 (2021) · Zbl 1470.35073 · doi:10.1112/jlms.12420
[16] H, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 1632-1657 (2018) · Zbl 1393.35100 · doi:10.1137/17M1144647
[17] K, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equations, 269, 5338-5378 (2020) · Zbl 1440.35330 · doi:10.1016/j.jde.2020.04.001
[18] J, Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption, Comm. Partial Differ. Equations, 47, 1024-1069 (2022) · Zbl 1489.35014 · doi:10.1080/03605302.2021.2021422
[19] J, Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, J. Differ. Equations, 299, 513-541 (2021) · Zbl 1472.35401 · doi:10.1016/j.jde.2021.07.029
[20] H. Y. Jin, Z. A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility. Proc. Amer. Math. Soc., 148 (2020), 4855-4873. https://doi.org/10.1090/proc/15124 · Zbl 1448.35516
[21] H, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equations, 269, 6758-6793 (2020) · Zbl 1441.35142 · doi:10.1016/j.jde.2020.05.018
[22] W, An \(n\)-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization, Proc. Roy. Soc. Edinburgh Sect. A, 151, 821-841 (2021) · Zbl 1467.35324 · doi:10.1017/prm.2020.38
[23] W, Global classical solutions for a class of reaction-diffusion system with density-suppressed motility, Electron. Res. Arch., 30, 995-1015 (2022) · Zbl 1486.35260 · doi:10.3934/era.2022052
[24] W, Global existence for a class of chemotaxis-consumption systems with signal-dependent motility and generalized logistic source, Nonlinear Anal. Real World Appl., 56, 103160 (2020) · Zbl 1471.35179 · doi:10.1016/j.nonrwa.2020.103160
[25] J, Pattern formation in bacterial colonies with density-dependent diffusion, European J. Appl. Math., 30, 196-218 (2019) · Zbl 1407.92030 · doi:10.1017/S0956792518000013
[26] M, Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60, 011507 (2019) · Zbl 1406.35154 · doi:10.1063/1.5061738
[27] C, Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149, 101-123 (2017) · Zbl 1398.35110 · doi:10.1007/s10440-016-0089-7
[28] C, Asymptotic behavior of a quasilinear Keller-Segel system with signal-suppressed motility, Calc. Var. Partial Differ. Equations, 60, 1-29 (2021) · Zbl 1471.35050 · doi:10.1007/s00526-021-02053-y
[29] J, Traveling wave solutions to the density-suppressed motility model, J. Differential Equations, 301, 1-36 (2021) · Zbl 1473.35092 · doi:10.1016/j.jde.2021.07.038
[30] M. Ma, R. Peng, Z. Wang. Stationary and non-stationary patterns of the density-suppressed motility model. Phys. D, 402 (2020), 132259. https://doi.org/10.1016/j.physd.2019.132259 · Zbl 1453.37086
[31] Z, Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., 86, 577-603 (2021) · Zbl 1467.92042 · doi:10.1093/imamat/hxab006
[32] A. Yagi, Abstract parabolic evolution equations and their applications, Springer Science and Business Media, 2009. https://doi.org/10.1007/978-3-642-04631-5 · Zbl 1190.35004
[33] \(N, L^p\) bounds of solutions of reaction-diffusion equations,, Commun. Partial Differ. Equations, 4, 827-868 (1979) · Zbl 0421.35009 · doi:10.1080/03605307908820113
[34] J. Murray, Mathematical Biology I: An Introduction, \(3^{rd}\) edition, Springer, Berlin, 2002. https://doi.org/10.1007/b98868 · Zbl 1006.92001
[35] J, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equations, 251, 1276-1304 (2011) · Zbl 1228.35037 · doi:10.1016/j.jde.2011.03.004
[36] H, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equations, 3, 13-75 (1990) · Zbl 0729.35062
[37] H, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Funct. Spaces Differ. Oper. Nonlinear Anal., 133, 9-126 (1993) · Zbl 0810.35037 · doi:10.1007/978-3-663-11336-2_1
[38] H, Global stability of prey-taxis systems, J. Differ. Equations, 262, 1257-1290 (2017) · Zbl 1364.35143 · doi:10.1016/j.jde.2016.10.010
[39] R, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343, 379-398 (2008) · Zbl 1143.35333 · doi:10.1016/j.jmaa.2008.01.005
[40] P, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18, 2597-2625 (2013) · Zbl 1277.35048 · doi:10.3934/dcdsb.2013.18.2597
[41] S. Sastry, Nonlinear System: Analysis, Stability, and Control, Springer, New York, 1999. https://doi.org/10.1007/978-1-4757-3108-8 · Zbl 0924.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.