×

Bypass transition in flow over a vibrating flat plate. (English) Zbl 1461.76211

Summary: The development of free-stream disturbances in flow over a vertically vibrating flat plate with a slender leading edge is investigated. The evolution of the optimal inflow perturbation that results in the maximum amplification is computed to investigate the effect of the plate vibration on the development of free-stream disturbance, secondary instability of streaks and subsequently the bypass transition to turbulence. It is observed that the plate vibration leads to periodic change of the angle of attack, shifting the free-stream disturbance to the upper or lower side of the plate. Therefore, the development of steady inflow perturbations, which receive the largest amplification, is interrupted by the vibration, and the perturbation amplification via the lift-up mechanism is weakened. The vibration brings a second peak of perturbation growth at the vibration frequency, leading to high-frequency free-stream perturbations penetrating into the base boundary layer, which is not observed in flow over a stationary plate owing to the sheltering mechanism. This resonance of the flow perturbation and the vibrating plate is explained by the staggering effect of the leading edge. Further, the direct numerical simulations with the optimal inflow perturbation imposed on the inflow boundary show that the vertical vibration of the plate leads to streamwise periodic vorticity near the edge of the boundary layer. This inhomogeneity of the streamwise vorticity brings about streamwisely localized distortion of the low-speed streaks and, thus, an intermittent secondary instability. Therefore, before the streaks break down to turbulence, they undergo several rounds of secondary instabilities, resulting in an elongated bypass transition process.

MSC:

76F06 Transition to turbulence
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Alfredsson, P. H. & Matsubara, M.1996 Streaky structure in transition. In Transitional Boundary Layers in Aeronautics (ed. M. Henkes & J. L. van Ingen), pp. 374-386. Elsevier.
[2] Andersson, P., Berggren, M. & Henningson, D. S.1999Optimal disturbances and bypass transition in boundary layers. Phys. Fluids11, 134-150. · Zbl 1147.76308
[3] Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S.2001On the breakdown of boundary layer streaks. J. Fluid Mech.428, 29-60. · Zbl 0983.76025
[4] Asai, M., Minagawa, M. & Nishioka, M.2002The instability and breakdown of low-speed streak. J. Fluid Mech.455, 289-314. · Zbl 1147.76300
[5] Balamurugan, G. & Mandal, A. C.2017Experiments on localized secondary instability in bypass boundary layer transition. J. Fluid Mech.817, 217-263.
[6] Baron, A. & Quadrio, M.1996Turbulent drag reduction by spanwise wall oscillation. Appl. Sci. Res.55, 311-326. · Zbl 0900.76165
[7] Blackburn, H. M. & Sherwin, S. J.2004Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys.197 (2), 759-778. · Zbl 1106.76418
[8] Brandt, L., Schlatter, P. & Henningson, D. S.2004Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech.517, 167-198. · Zbl 1131.76326
[9] Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O.2011Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech.687, 503-528. · Zbl 1241.76340
[10] Butler, K. M. & Farrell, B. F.1992Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids4, 1637-1650.
[11] Choi, K. S.2002Near wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids14 (7), 2530-2542. · Zbl 1185.76085
[12] Choi, H., Moin, P. & Kim, J.1994Active turbulence control for drag reduction in wall bounded flows. J. Fluid Mech.262, 75-110. · Zbl 0800.76191
[13] Fransson, J. H. M. & Alfredsson, P. H.2003On the disturbance growth in an asymptotic suction boundary layer. J. Fluid Mech.482, 51-90. · Zbl 1049.76508
[14] Fuciarelli, D., Reed, H. & Lyttle, I.2000Direct numerical simulation of leading-edge receptivity to sound. AIAA J.38 (7), 1159-1165.
[15] Hack, M. J. P. & Zaki, T. A.2012The continuous spectrum of time-harmonic shear layers. Phys. Fluids24, 034101. · Zbl 1338.76021
[16] Hack, M. J. P. & Zaki, T. A.2014The influence of harmonic wall motion on transitional boundary layer. J. Fluid Mech.760, 63-94.
[17] Hack, M. J. P. & Zaki, T. A.2015Modal and non-modal stability of boundary layers forced by spanwise wall oscillations. J. Fluid Mech.778, 389-427. · Zbl 1382.76110
[18] Hammerton, P. W. & Kerschen, E. J.1996Boundary-layer receptivity for a parabolic leading edge. J. Fluid Mech.310, 243-267. · Zbl 0863.76018
[19] Hunt, J. C. R. & Durbin, P. A.1999Perturbed vortical layers and shear sheltering. Fluid Dyn. Res.24, 375-404. · Zbl 1051.76520
[20] Jacobs, R. G. & Durbin, P. A.2001Simulations of bypass transition. J. Fluid Mech.428, 185-212. · Zbl 0983.76027
[21] Jeong, J. & Hussain, F.1995On the identification of a vortex. J. Fluid Mech.285, 69-94. · Zbl 0847.76007
[22] Jung, W. J., Mangivacchi, N. & Akhavan, R.1992Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A4 (8), 1605-1607.
[23] Kametani, Y. & Fukagata, K.2011Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech.681, 154-172. · Zbl 1241.76281
[24] Karniadakis, G. E. & Choi, K. S.2003Mechanisms in transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech.35, 45-62. · Zbl 1039.76028
[25] Karniadakis, G. & Sherwin, S. J.2007Spectral/HP Element Methods for Computational Fluid Dynamics. Oxford University Press. · Zbl 1256.76003
[26] Kendall, J. M.1985 Experiment study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695. American Institute of Aeronautics and Astronautics.
[27] Laadhari, F., Skandaji, L. & Morel, R.1994Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids6 (10), 3218-3220.
[28] Landahl, M. T.1975Wave breakdown and turbulence. SIAM J. Appl. Maths28 (4), 735-756. · Zbl 0276.76023
[29] Landahl, M. T.1980A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.98, 1-34.
[30] Lua, K. B., Lu, H., Zhang, X. H., Lim, T. T. & Yeo, K. S.2016Aerodynamics of two-dimensional flapping wings in tandem configuration. Phys. Fluids28, 121901.
[31] Luchini, P.2000Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech.404, 289-309. · Zbl 0959.76022
[32] Mandal, A. C., Venkatakrishnan, L. & Dey, J.2010A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech.660, 114-146. · Zbl 1205.76019
[33] Mans, J., Kadijk, E. C., Lange, H. C. & Van Steenhoven, A. A.2005Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids39, 1071.
[34] Mao, X., Blackburn, H. M. & Sherwin, S. J.2013Calculation of global optimal initial and boundary perturbations for the linearised incompressible Navier-Stokes equations. J. Comput. Phys.235, 258-273. · Zbl 1291.65294
[35] Mao, X., Sherwin, S. J. & Blackburn, H. M.2011Transient growth and bypass transition in stenotic flow with a physiological waveform. Theor. Comput. Fluid Dyn.25, 31-42. · Zbl 1272.76329
[36] Mao, X., Zaki, T. A., Blackburn, H. M. & Sherwin, S. J.2017Transition induced by linear and nonlinear perturbation growth in flow past a compressor blade. J. Fluid Mech.820, 604-632. · Zbl 1383.76191
[37] Matsubara, M. & Alfredsson, P.2001Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech.430, 149-168. · Zbl 0963.76509
[38] Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S.2010Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech.650, 181-214. · Zbl 1189.76192
[39] Morkovin, M. V.1969 On the many faces of transition. In Viscous Drag Reduction (ed. C. S. Wells), pp. 1-31. Springer.
[40] Nagarajan, S., Lele, S. K. & Ferziger, J. H.2007Leading-edge effects in bypass transition. J. Fluid Mech.572, 471-504. · Zbl 1145.76025
[41] Nolan, K. P. & Walsh, E. J.2012Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech.702, 215-238. · Zbl 1248.76006
[42] Nolan, K. P. & Zaki, T. A.2013Conditional sampling of transitional boundary layer in pressure gradients. J. Fluid Mech.728, 306-339. · Zbl 1291.76106
[43] Olinger, D. J. & Sreenivasan, K. R.1988Nonlinear dynamic of the wake of an oscillating cylinder. Phys. Rev. Lett.60, 797-800.
[44] Pamiès, M., Garnier, E., Merlen, A. & Sagaut, P.2007Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids19, 108102.
[45] Reddy, S. C. & Henningson, D. S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[46] Ricco, P.2011Laminar streaks with spanwise wall forcing. Phys. Fluids22, 064103.
[47] Riley, N.1965Oscillating viscous flow. Mathematika12, 161-175.
[48] Riley, N.1967Oscillating viscous flow. review and extension. IMA J. Appl. Maths3 (4), 419-434. · Zbl 0155.55202
[49] Saric, W. S.1994Görtler vortices. Annu. Rev. Fluid Mech.26, 379-409. · Zbl 0802.76027
[50] Schrader, L. U., Brandt, L., Mavriplis, C. & Henningson, D. S.2010Receptivity of free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech.653, 245-271. · Zbl 1193.76057
[51] Spalart, P. R.1989Theoretical and numerical study of a three dimensional turbulent boundary layer. J. Fluid Mech.205, 319-340.
[52] Swearingen, J. D. & Blackwelder, R. F.1987The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech.182, 255-290.
[53] Touber, E. & Leschziner, M. A.2012Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech.507, 1-51. · Zbl 1250.76126
[54] Vaughan, N. J. & Zaki, T. A.2011Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech.681, 116-153. · Zbl 1241.76183
[55] Wanderley, J. B. V. & Corke, T. C.2001Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates. J. Fluid Mech.429, 1-21. · Zbl 1015.76024
[56] Wang, B., Mao, X. & Zaki, T. A.2019Low-frequency selectivity in flat-plate boundary layer with elliptic leading edge. J. Fluid Mech.866, 239-262. · Zbl 1415.76246
[57] Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H.1994Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech.281, 193-218.
[58] Xiao, D. & Papadakis, G.2019Nonlinear optimal control of transition due to a pair of vortical perturbations using a receding horizon approach. J. Fluid Mech.861, 524-555. · Zbl 1415.76223
[59] Zaki, T. A. & Durbin, P. A.2005Mode interaction and the bypass route to transition. J. Fluid Mech.531, 85-111. · Zbl 1070.76024
[60] Zaki, T. A. & Durbin, P. A.2006Continuous mode transition and the effects of pressure gradients. J. Fluid Mech.563, 357-388. · Zbl 1177.76136
[61] Zaki, T. A. & Saha, S.2009On shear sheltering and the structure of vortical modes in single and two-fluid boundary layers. J. Fluid Mech.626, 111-147. · Zbl 1171.76365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.