×

Primordial gravity wave background anisotropies. (English) Zbl 1388.83073

Summary: We consider the primordial gravity wave background produced by inflation. We compute the small anisotropy produced by the primordial scalar fluctuations.

MSC:

83C35 Gravitational waves

References:

[1] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett.30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz.30 (1979) 719] [INSPIRE].
[2] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett.B 91 (1980) 99 [INSPIRE]. · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[3] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev.D 23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[4] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett.B 108 (1982) 389 [INSPIRE]. · doi:10.1016/0370-2693(82)91219-9
[5] A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett.48 (1982) 1220 [INSPIRE]. · doi:10.1103/PhysRevLett.48.1220
[6] V.F. Mukhanov and G.V. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett.33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz.33 (1981) 549] [INSPIRE].
[7] S.W. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett.B 115 (1982) 295 [INSPIRE]. · doi:10.1016/0370-2693(82)90373-2
[8] A.H. Guth and S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett.49 (1982) 1110 [INSPIRE]. · doi:10.1103/PhysRevLett.49.1110
[9] A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett.B 117 (1982) 175 [INSPIRE]. · doi:10.1016/0370-2693(82)90541-X
[10] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev.D 28 (1983) 679 [INSPIRE].
[11] R.K. Sachs and A.M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J.147 (1967) 73 [Gen. Rel. Grav.39 (2007) 1929] [INSPIRE].
[12] L.A. Boyle and P.J. Steinhardt, Probing the early universe with inflationary gravitational waves, Phys. Rev.D 77 (2008) 063504 [astro-ph/0512014] [INSPIRE].
[13] K. Nakayama, S. Saito, Y. Suwa and J. Yokoyama, Probing reheating temperature of the universe with gravitational wave background, JCAP06 (2008) 020 [arXiv:0804.1827] [INSPIRE]. · doi:10.1088/1475-7516/2008/06/020
[14] Y. Zhang, X.Z. Er, T.Y. Xia, W. Zhao and H.X. Miao, Exact analytic spectrum of relic gravitational waves in accelerating universe, Class. Quant. Grav.23 (2006) 3783 [astro-ph/0604456] [INSPIRE]. · Zbl 1104.83022
[15] S. Kuroyanagi, K. Nakayama and S. Saito, Prospects for determination of thermal history after inflation with future gravitational wave detectors, Phys. Rev.D 84 (2011) 123513 [arXiv:1110.4169] [INSPIRE].
[16] R. Jinno, T. Moroi and K. Nakayama, Inflationary gravitational waves and the evolution of the early universe, JCAP01 (2014) 040 [arXiv:1307.3010] [INSPIRE]. · doi:10.1088/1475-7516/2014/01/040
[17] L. Boubekeur, P. Creminelli, J. Norena and F. Vernizzi, Action approach to cosmological perturbations: the 2ndorder metric in matter dominance, JCAP08 (2008) 028 [arXiv:0806.1016] [INSPIRE]. · doi:10.1088/1475-7516/2008/08/028
[18] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[19] V. Alba, to appear (2015).
[20] S. Weinberg, Damping of tensor modes in cosmology, Phys. Rev.D 69 (2004) 023503 [astro-ph/0306304] [INSPIRE].
[21] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP10 (2004) 006 [astro-ph/0407059] [INSPIRE].
[22] P. Creminelli, C. Pitrou and F. Vernizzi, The CMB bispectrum in the squeezed limit, JCAP11 (2011) 025 [arXiv:1109.1822] [INSPIRE]. · doi:10.1088/1475-7516/2011/11/025
[23] E. Pajer, F. Schmidt and M. Zaldarriaga, The observed squeezed limit of cosmological three-point functions, Phys. Rev.D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].
[24] K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys.B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].
[25] D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett.B 524 (2002) 5 [hep-ph/0110002] [INSPIRE]. · Zbl 0981.83063
[26] T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett.B 522 (2001) 215 [Erratum ibid.B 539 (2002) 303] [hep-ph/0110096] [INSPIRE]. · Zbl 0977.83120
[27] G. Giampieri and A.G. Polnarev, Detecting an anisotropic gravitational wave background with LISA, Class. Quant. Grav.14 (1997) 1521 [INSPIRE]. · doi:10.1088/0264-9381/14/6/021
[28] B. Allen and A.C. Ottewill, Detection of anisotropies in the gravitational wave stochastic background, Phys. Rev.D 56 (1997) 545 [gr-qc/9607068] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.