×

Thermal gravitational-wave background in the general pre-inflationary scenario. (English) Zbl 1515.83085

MSC:

83C35 Gravitational waves

Software:

CAMB; DLMF; CosmoMC

References:

[1] E.W. Kolb and M.S. Turner, 1994 The Early Universe, Westview Press
[2] L.P. Grishchuk, 1975 Amplification of gravitational waves in an istropic universe Sov. Phys. JETP40 409
[3] L.P. Grishchuk, 1977 Graviton Creation in the Early Universe, Annals N. Y. Acad. Sci.302 439 · doi:10.1111/j.1749-6632.1977.tb37064.x
[4] L.P. Grishchuk, 1976 Primordial gravitons and possibility of their observation JETP Lett.23 293
[5] A.A. Starobinsky, 1979 Spectrum of relict gravitational radiation and the early state of the universe JETP Lett.30 682
[6] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, 1992 Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept.215 203 · doi:10.1016/0370-1573(92)90044-Z
[7] D.H. Lyth and A. Riotto, 1999 Particle physics models of inflation and the cosmological density perturbation, Phys. Rept.314 1 [hep-ph/9807278] · doi:10.1016/S0370-1573(98)00128-8
[8] WMAP collaboration, D.N. Spergel et al., 2003 First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl.148 175 [astro-ph/0302209] · doi:10.1086/377226
[9] WMAP collaboration, E. Komatsu et al., 2011 Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl.192 18 [1001.4538] · doi:10.1088/0067-0049/192/2/18
[10] WMAP collaboration, G. Hinshaw et al., 2013 Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl.208 19 [1212.5226] · doi:10.1088/0067-0049/208/2/19
[11] Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys.571 A1 [1303.5062] · doi:10.1051/0004-6361/201321529
[12] Planck collaboration, P.A.R. Ade et al., 2014 Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 A16 [1303.5076] · doi:10.1051/0004-6361/201321591
[13] Planck collaboration, N. Aghanim et al., 2016 Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys.594 A11 [1507.02704] · doi:10.1051/0004-6361/201526926
[14] D. Baumann, Inflation, [0907.5424]
[15] C.R. Contaldi, M. Peloso, L. Kofman and A.D. Linde, 2003 Suppressing the lower multipoles in the CMB anisotropies J. Cosmol. Astropart. Phys.2003 07 002 [astro-ph/0303636] · Zbl 1027.83531
[16] J.M. Cline, P. Crotty and J. Lesgourgues, 2003 Does the small CMB quadrupole moment suggest new physics? J. Cosmol. Astropart. Phys.2003 09 010 [astro-ph/0304558]
[17] Y.-S. Piao, B. Feng and X.-m. Zhang, 2004 Suppressing CMB quadrupole with a bounce from contracting phase to inflation, Phys. Rev. D 69 103520 [hep-th/0310206] · doi:10.1103/PhysRevD.69.103520
[18] Y.-S. Piao, 2005 A Possible explanation to low CMB quadrupole, Phys. Rev. D 71 087301 [astro-ph/0502343] · doi:10.1103/PhysRevD.71.087301
[19] Y.-S. Piao, S. Tsujikawa and X.-m. Zhang, 2004 Inflation in string inspired cosmology and suppression of CMB low multipoles, Class. Quant. Grav.21 4455 [hep-th/0312139] · Zbl 1062.85522 · doi:10.1088/0264-9381/21/18/011
[20] B.A. Powell and W.H. Kinney, 2007 The pre-inflationary vacuum in the cosmic microwave background, Phys. Rev. D 76 063512 [astro-ph/0612006] · doi:10.1103/PhysRevD.76.063512
[21] F.T. Falciano, M. Lilley and P. Peter, 2008 A classical bounce: Constraints and consequences, Phys. Rev. D 77 083513 [0802.1196] · doi:10.1103/PhysRevD.77.083513
[22] M. Lilley, L. Lorenz and S. Clesse, 2011 Observational signatures of a non-singular bouncing cosmology J. Cosmol. Astropart. Phys.2011 06 004 [1104.3494]
[23] J. Mielczarek, 2008 Gravitational waves from the Big Bounce J. Cosmol. Astropart. Phys.2008 11 011 [0807.0712]
[24] J. Mielczarek, M. Kamionka, A. Kurek and M. Szydlowski, 2010 Observational hints on the Big Bounce J. Cosmol. Astropart. Phys.2010 07 004 [1005.0814]
[25] Y.-T. Wang and Y.-S. Piao, 2015 Parity violation in pre-inflationary bounce, Phys. Lett. B 741 55 [1409.7153] · Zbl 1373.83137 · doi:10.1016/j.physletb.2014.12.011
[26] Z.-G. Liu, H. Li and Y.-S. Piao, 2014 Preinflationary genesis with CMB B-mode polarization, Phys. Rev. D 90 083521 [1405.1188] · doi:10.1103/PhysRevD.90.083521
[27] Ya.B. Zeldovich, 1981 The Birth of a Closed Universe and the Anthropogenic Principle Pisma Astron. Zh.7 579
[28] L.P. Grishchuk and Ya.B. Zeldovich, 1982 Complete cosmological theories, in Quantum Structure of Space and Time, M. Duff and C. Isham eds., Cambridge University Press, Cambridge, England , pg. 409
[29] Ya.B. Zeldovich, 1986 Cosmological field theory for observational astronomers Sov. Sci. Rev. E Astrophys. Space Phys.5 1, Harwood Academic Publishers, http://ned.ipac.caltech.edu/level5/Zeldovich/Zel_contents.html
[30] A. Vilenkin, 2003 Quantum cosmology and eternal inflation, in The Future of Theoretical Physics and Cosmology, G.W. Gibbons, E.P.S. Shellard and S.J. Rankin eds., Cambridge University Press, Cambridge, England
[31] L.P. Grishchuk, 2009 Some Uncomfortable Thoughts on the Nature of Gravity, Cosmology and the Early Universe, Space Sci. Rev.148 315 [0903.4395] · doi:10.1007/s11214-009-9509-6
[32] L.P. Grishchuk, 1993 Quantum effects in cosmology, Class. Quant. Grav.10 2449 [gr-qc/9302036] · Zbl 0789.53052 · doi:10.1088/0264-9381/10/12/006
[33] S. Hirai, 2003 Initial condition of scalar perturbation in inflation, Class. Quant. Grav.20 1673 [hep-th/0212040] · Zbl 1032.83054 · doi:10.1088/0264-9381/20/9/306
[34] B.A. Powell and W.H. Kinney, 2007 The pre-inflationary vacuum in the cosmic microwave background, Phys. Rev. D 76 063512 [astro-ph/0612006] · doi:10.1103/PhysRevD.76.063512
[35] I.-C. Wang and K.-W. Ng, 2008 Effects of a pre-inflation radiation-dominated epoch to CMB anisotropy, Phys. Rev. D 77 083501 [0704.2095] · doi:10.1103/PhysRevD.77.083501
[36] G. Marozzi, M. Rinaldi and R. Durrer, 2011 On infrared and ultraviolet divergences of cosmological perturbations, Phys. Rev. D 83 105017 [1102.2206] · doi:10.1103/PhysRevD.83.105017
[37] K. Bhattacharya, S. Mohanty and A. Nautiyal, 2006 Enhanced polarization of CMB from thermal gravitational waves, Phys. Rev. Lett.97 251301 [astro-ph/0607049] · doi:10.1103/PhysRevLett.97.251301
[38] K. Bhattacharya, S. Mohanty and R. Rangarajan, 2006 Temperature of the inflaton and duration of inflation from WMAP data, Phys. Rev. Lett.96 121302 [hep-ph/0508070] · doi:10.1103/PhysRevLett.96.121302
[39] W. Zhao, D. Baskaran and P. Coles, 2009 Detecting relics of a thermal gravitational wave background in the early Universe, Phys. Lett. B 680 411 [0907.4303] · doi:10.1016/j.physletb.2009.09.018
[40] S. Das, G. Goswami, J. Prasad and R. Rangarajan, 2015 Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum J. Cosmol. Astropart. Phys.2015 06 001 [1412.7093]
[41] S. Das, G. Goswami, J. Prasad and R. Rangarajan, 2016 Constraints on just enough inflation preceded by a thermal era, Phys. Rev. D 93 023516 [1506.04808] · doi:10.1103/PhysRevD.93.023516
[42] T. Zhu, A. Wang, K. Kirsten, G. Cleaver and Q. Sheng, Universal features of quantum bounce in loop quantum cosmology, [1607.06329]
[43] L.P. Grishchuk, 2005 Relic gravitational waves and cosmology, Phys. Usp.48 1235 [gr-qc/0504018] · doi:10.1070/PU2005v048n12ABEH005795
[44] Y. Zhang, Y. Yuan, W. Zhao and Y.-T. Chen, 2005 Relic gravitational waves in the accelerating Universe, Class. Quant. Grav.22 1383 [astro-ph/0501329] · Zbl 1064.83079 · doi:10.1088/0264-9381/22/7/011
[45] Y. Zhang, X.Z. Er, T.Y. Xia, W. Zhao and H.X. Miao, 2006 Exact Analytic Spectrum of Relic Gravitational Waves in Accelerating Universe, Class. Quant. Grav.23 3783 [astro-ph/0604456] · Zbl 1104.83022 · doi:10.1088/0264-9381/23/11/007
[46] W. Zhao and Y. Zhang, 2006 Relic gravitational waves and their detection, Phys. Rev. D 74 043503 [astro-ph/0604458] · doi:10.1103/PhysRevD.74.043503
[47] M. Giovannini, 2010 Stochastic backgrounds of relic gravitons: a theoretical appraisal, PMC Phys. A 4 1 [0901.3026] · doi:10.1186/1754-0410-4-1
[48] Y. Zhang, X.Z. Er, T.Y. Xia, W. Zhao and H.X. Miao, 2006 Exact Analytic Spectrum of Relic Gravitational Waves in Accelerating Universe, Class. Quant. Grav.23 3783 [astro-ph/0604456] · Zbl 1104.83022 · doi:10.1088/0264-9381/23/11/007
[49] Y. Zhang, Y. Yuan, W. Zhao and Y.-T. Chen, 2005 Relic gravitational waves in the accelerating Universe, Class. Quant. Grav.22 1383 [astro-ph/0501329] · Zbl 1064.83079 · doi:10.1088/0264-9381/22/7/011
[50] A. Riotto, Inflation and the theory of cosmological perturbations, [hep-ph/0210162]
[51] F.W.J. Olver, 2010 NIST handbook of mathematical functions, Cambridge University Press · Zbl 1198.00002
[52] M. Gasperini, M. Giovannini and G. Veneziano, 1993 Squeezed thermal vacuum and the maximum scale for inflation, Phys. Rev. D 48 R439 [gr-qc/9306015] · doi:10.1103/PhysRevD.48.R439
[53] V. Mukhanov and S. Winitzki, 2007 Introduction to Quantum Effects in Gravity, Cambridge University Press · Zbl 1129.83002 · doi:10.1017/CBO9780511809149
[54] M.S. Turner, 1983 Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28 1243 · doi:10.1103/PhysRevD.28.1243
[55] J.H. Traschen and R.H. Brandenberger, 1990 Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D 42 2491 · doi:10.1103/PhysRevD.42.2491
[56] L. Kofman, A.D. Linde and A.A. Starobinsky, 1997 Towards the theory of reheating after inflation, Phys. Rev. D 56 3258 [hep-ph/9704452] · doi:10.1103/PhysRevD.56.3258
[57] B.A. Bassett, S. Tsujikawa and D. Wands, 2006 Inflation dynamics and reheating, Rev. Mod. Phys.78 537 [astro-ph/0507632] · doi:10.1103/RevModPhys.78.537
[58] J. Braden, L. Kofman and N. Barnaby, 2010 Reheating the Universe After Multi-Field Inflation J. Cosmol. Astropart. Phys.2010 07 016 [1005.2196]
[59] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, 2010 Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci.60 27 [1001.2600] · doi:10.1146/annurev.nucl.012809.104511
[60] M. Drewes and J.U. Kang, 2013 The Kinematics of Cosmic Reheating, Nucl. Phys. B 875 315 [Erratum ibid B 888 (2014) 284] [1305.0267] · Zbl 1282.83067 · doi:10.1016/j.nuclphysb.2013.07.009
[61] M.P. Hertzberg, J. Karouby, W.G. Spitzer, J.C. Becerra and L. Li, 2014 Theory of self-resonance after inflation. I. Adiabatic and isocurvature Goldstone modes, Phys. Rev. D 90 123528 [1408.1396] · doi:10.1103/PhysRevD.90.123528
[62] U. Seljak and M. Zaldarriaga, 1997 Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett.78 2054 [astro-ph/9609169] · doi:10.1103/PhysRevLett.78.2054
[63] M. Kamionkowski, A. Kosowsky and A. Stebbins, 1997 A probe of primordial gravity waves and vorticity, Phys. Rev. Lett.78 2058 [astro-ph/9609132] · doi:10.1103/PhysRevLett.78.2058
[64] J.R. Pritchard and M. Kamionkowski, 2005 Cosmic microwave background fluctuations from gravitational waves: An analytic approach, Annals Phys.318 2 [astro-ph/0412581] · Zbl 1075.83017 · doi:10.1016/j.aop.2005.03.005
[65] Y. Zhang, W. Zhao, T. Xia and Y. Yuan, 2006 Analytic approach to the CMB polarizations generated by relic gravitational waves, Phys. Rev. D 74 083006 [astro-ph/0508345] · doi:10.1103/PhysRevD.74.083006
[66] D. Baskaran, L.P. Grishchuk and A.G. Polnarev, 2006 Imprints of Relic Gravitational Waves in Cosmic Microwave Background Radiation, Phys. Rev. D 74 083008 [gr-qc/0605100] · doi:10.1103/PhysRevD.74.083008
[67] R. Flauger and S. Weinberg, 2007 Tensor Microwave Background Fluctuations for Large Multipole Order, Phys. Rev. D 75 123505 [astro-ph/0703179] · doi:10.1103/PhysRevD.75.123505
[68] BICEP2, Planck collaborations, P.A.R. Ade et al., 2015 Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett.114 101301 [1502.00612] · doi:10.1103/PhysRevLett.114.101301
[69] Planck collaboration, N. Aghanim et al., 2016 Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys.594 A11 [1507.02704] · doi:10.1051/0004-6361/201526926
[70] SPTpol collaboration, D. Hanson et al., 2013 Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Phys. Rev. Lett.111 141301 [1307.5830] · doi:10.1103/PhysRevLett.111.141301
[71] SPTpol collaboration, R. Keisler et al., 2015 Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data, Astrophys. J.807 151 [1503.02315] · doi:10.1088/0004-637X/807/2/151
[72] POLARBEAR collaboration, P.A.R. Ade et al., 2014 A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR, Astrophys. J.794 171 [1403.2369] · doi:10.1088/0004-637X/794/2/171
[73] ACTPol collaboration, S. Naess et al., 2014 The Atacama Cosmology Telescope: CMB Polarization at 200 < ℓ < 9000 J. Cosmol. Astropart. Phys.2014 10 007 [1405.5524]
[74] BICEP2 collaboration, P.A.R. Ade et al., 2014 Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett.112 241101 [1403.3985] · doi:10.1103/PhysRevLett.112.241101
[75] BICEP2, Keck Array collaborations, P.A.R. Ade et al., 2015 BICEP2/Keck Array V: Measurements of B-mode Polarization at Degree Angular Scales and 150 GHz by the Keck Array, Astrophys. J.811 126 [1502.00643] · doi:10.1088/0004-637X/811/2/126
[76] BICEP2, Keck Array collaborations, P.A.R. Ade et al., 2016 Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett.116 031302 [1510.09217] · doi:10.1103/PhysRevLett.116.031302
[77] CMBPol Study Team collaboration, D. Baumann et al., 2009 CMBPol Mission Concept Study: Probing Inflation with CMB Polarization, AIP Conf. Proc.1141 10 [0811.3919] · doi:10.1063/1.3160885
[78] EPIC collaboration, J. Bock et al., Study of the Experimental Probe of Inflationary Cosmology (EPIC)-Intemediate Mission for NASA’s Einstein Inflation Probe, [0906.1188]
[79] W. Zhao, 2011 Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission J. Cosmol. Astropart. Phys.2011 03 007 [1102.4908]
[80] Y.-Z. Ma, W. Zhao and M.L. Brown, 2010 Constraints on standard and non-standard early Universe models from CMB B-mode polarization J. Cosmol. Astropart. Phys.2010 10 007 [1007.2396]
[81] M. Tegmark, A. Taylor and A. Heavens, 1997 Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?, Astrophys. J.480 22 [astro-ph/9603021] · doi:10.1086/303939
[82] Q.-G. Huang, S. Wang and W. Zhao, 2015 Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite J. Cosmol. Astropart. Phys.2015 10 035 [1509.02676]
[83] P. Creminelli, D.L. López Nacir, M. Simonović, G. Trevisan and M. Zaldarriaga, 2015 Detecting Primordial B-Modes after Planck J. Cosmol. Astropart. Phys.2015 11 031 [1502.01983] .
[84] M. Escudero, H. Ramírez, L. Boubekeur, E. Giusarma and O. Mena, 2016 The present and future of the most favoured inflationary models after Planck 2015 J. Cosmol. Astropart. Phys.2016 02 020 [1509.05419]
[85] M. Zaldarriaga and U. Seljak, 1998 Gravitational lensing effect on cosmic microwave background polarization, Phys. Rev. D 58 023003 [astro-ph/9803150] · doi:10.1103/PhysRevD.58.023003
[86] W. Hu, 2002 Dark synergy: Gravitational lensing and the CMB, Phys. Rev. D 65 023003 [astro-ph/0108090] · doi:10.1103/PhysRevD.65.023003
[87] A. Lewis and A. Challinor, 2006 Weak gravitational lensing of the CMB, Phys. Rept.429 1 [astro-ph/0601594] · doi:10.1016/j.physrep.2006.03.002
[88] http://camb.info/
[89] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J.538 473 [astro-ph/9911177] · doi:10.1086/309179
[90] http://cosmologist.info/cosmomc/
[91] A. Lewis and S. Bridle, 2002 Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66 103511 [astro-ph/0205436] · doi:10.1103/PhysRevD.66.103511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.