×

A direct approach to \(K\)-reflections of \(T_0\) spaces. (English) Zbl 1434.54007

The author presents a direct approach to \(\mathbf{K}\)-reflections of \(T_0\) spaces.
For a full subcategory \(\mathbf{K}\) of \(\mathbf{Top}_0,\) containing \(\mathbf{Sob}\) (that is, the category of sober spaces), and a \(T_0\) space \(X,\) let \(\mathbf{K}(X)=\{A\subseteq X:A\) is closed and for any continuous mapping \(f:X\rightarrow Y\) to a \(\mathbf{K}\)-space \(Y,\) there exists a unique \(y_A\in Y\) such that \(\overline{f(A)}=\overline{\{y_A\}}\}\). Equip \(\mathbf{K}(X)\) with the lower Vietoris topology and denote the resulting space by \(P_H(\mathbf{K}(X))\).
The author proves that if \(P_H(\mathbf{K}(X))\) is a \(\mathbf{K}\)-space, then the pair \((X^k=P_H(\mathbf{K}(X)),\eta_X)\), where \(\eta_X:X\rightarrow X^k\), \(x\mapsto \overline{\{x\}},\) is the \(\mathbf{K}\)-reflection of \(X\).
Now \(\mathbf{K}\) is called an adequate category if for any \(T_0\) space \(X,\) \(P_H(\mathbf{K}(X))\) is a \(\mathbf{K}\)-space. It follows that if \(\mathbf{K}\) is adequate, then \(\mathbf{K}\) is reflective in \(\mathbf{Top}_0\).
It is shown that the three well-known categories \(\mathbf{Sob}\), \(\mathbf{Top}_d\) of \(d\)-spaces and \(\mathbf{Top}_w\) of well-filtered spaces are all adequate. The same applies to what the author calls a Keimel-Lawson category.
Some important properties of \(\mathbf{K}\)-spaces and \(\mathbf{K}\)-reflections of \(T_0\) spaces are investigated. Among other things, it is shown that if \(\mathbf{K}\) is adequate, then for each finite family \(\{X_i:1\leq i\leq n\}\) of \(T_0\) spaces, we have that \((\Pi_{i=1}^nX_i)^k=\Pi_{i=1}^n{X^k_i}\) (up to homeomorphism).

MSC:

54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
06B35 Continuous lattices and posets, applications
06F30 Ordered topological structures
18F60 Categories of topological spaces and continuous mappings

References:

[1] Engelking, R., General Topology (1989), Polish Scientific Publishers: Polish Scientific Publishers Warzawa · Zbl 0684.54001
[2] Erné, M., Infinite distributive laws versus local connectedness and compactness properties, Topol. Appl., 156, 2054-2069 (2009) · Zbl 1190.54022
[3] Erné, M., The strength of prime ideal separation, sobriety, and compactness theorems, Topol. Appl., 241, 263-290 (2018) · Zbl 1446.03082
[4] Erné, M., Categories of locally hypercompact spaces and quasicontinuous posets, Appl. Categ. Struct., 26, 823-854 (2018) · Zbl 1441.06003
[5] Ershov, Y., On d-spaces, Theor. Comput. Sci., 224, 59-72 (1999) · Zbl 0976.54015
[6] Gierz, G.; Hofmann, K.; Keimel, K.; Lawson, J.; Mislove, M.; Scott, D., Continuous Lattices and Domains, Encycl. Math. Appl., vol. 93 (2003), Cambridge University Press · Zbl 1088.06001
[7] Gierz, G.; Lawson, J., Generalized continuous and hypercontinuous lattices, Rocky Mt. J. Math., 11, 271-296 (1981) · Zbl 0472.06014
[8] Gierz, G.; Lawson, J.; Stralka, A., Quasicontinuous posets, Houst. J. Math., 9, 191-208 (1983) · Zbl 0529.06002
[9] Goubault-Larrecq, J., Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, vol. 22 (2013), Cambridge University Press · Zbl 1280.54002
[10] Heckmann, R., An Upper Power Domain Construction in Terms of Strongly Compact Sets, Lecture Notes in Computer Science, vol. 598, 272-293 (1992), Springer: Springer Berlin Heidelberg New York · Zbl 1518.68200
[11] Heckmann, R.; Keimel, K., Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci., 298, 215-232 (2013) · Zbl 1334.68127
[12] Hoffmann, R.-E., On the sobrification remainder \({}^SX - X\), Pac. J. Math., 83, 145-156 (1979) · Zbl 0421.54018
[13] Hoffmann, R.-E., Sobrification of partially ordered sets, Semigroup Forum, 17, 123-138 (1979) · Zbl 0402.54035
[14] Hofmann, K.; Lawson, J., The spectral theory of distributive continuous lattices, Trans. Am. Math. Soc., 246, 285-310 (1978) · Zbl 0402.54043
[15] Isbell, J., Completion of a construction of Johnstone, Proc. Am. Math. Soc., 85, 333-334 (1982) · Zbl 0492.06006
[16] Keimel, K.; Lawson, J., D-completion and d-topology, Ann. Pure Appl. Log., 159, 3, 292-306 (2009) · Zbl 1172.54016
[17] J. Lawson, G. Wu, X. Xi, Well-filtered spaces, compactness, and the lower topology, Houston J. Math., to appear. · Zbl 1471.54010
[18] Rudin, M., Directed sets which converge, (General Topology and Modern Analysis. General Topology and Modern Analysis, University of California, Riverside, 1980 (1981), Academic Press), 305-307 · Zbl 0457.04007
[19] Schalk, A., Algebras for Generalized Power Constructions (1993), Technische Hochschule Darmstadt, PhD Thesis · Zbl 0900.68275
[20] Shen, C.; Xi, X.; Xu, X.; Zhao, D., On well-filtered reflections of \(T_0\) spaces, Topol. Appl., 267, Article 106869 pp. (2019) · Zbl 1468.06018
[21] Wu, G.; Xi, X.; Xu, X.; Zhao, D., Existence of well-filterification, Topol. Appl., 267, Article 107044 pp. (2019)
[22] Wyler, U., Dedekind complete posets and Scott topologies, (Lecture Notes in Mathematics, vol. 871 (1981)), 384-389 · Zbl 0488.54018
[23] Xi, X.; Lawson, J., On well-filtered spaces and ordered sets, Topol. Appl., 228, 139-144 (2017) · Zbl 1372.54018
[24] Xi, X.; Zhao, D., Well-filtered spaces and their dcpo models, Math. Struct. Comput. Sci., 27, 507-515 (2017) · Zbl 1378.06005
[25] Xu, X.; Xi, X.; Zhao, D., A complete Heyting algebra whose Scott space is non-sober, Fund. Math. (2020), submitted for publication
[26] Xu, X.; Shen, C.; Xi, X.; Zhao, D., On \(T_0\) spaces determined by well-filtered spaces, Topol. Appl. (2020), submitted for publication · Zbl 1476.54021
[27] Zhang, Z.; Li, Q., A direct characterization of the monotone convergence space completion, Topol. Appl., 230, 99-104 (2017) · Zbl 1421.54008
[28] Zhao, D.; Fan, T., Dcpo-completion of posets, Theor. Comput. Sci., 411, 2167-2173 (2010) · Zbl 1192.06007
[29] Zhao, D.; Ho, W., On topologies defined by irreducible sets, J. Log. Algebraic Methods Program., 84, 1, 185-195 (2015) · Zbl 1308.54019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.