×

A brief survey on nonlinear control using adaptive dynamic programming under engineering-oriented complexities. (English) Zbl 1520.93280

Summary: Nonlinear dynamics is frequently encountered in practical applications. Adaptive dynamic programming (ADP), which is implemented via actor/critic neural networks with excellent approximation capabilities, is appropriate to be used in finding the solution for the control problem in the presence of known/unknown nonlinear dynamics. The objective of this paper is to introduce state-of-the-art ADP-based algorithms and survey the recent advances in the ADP-based control strategies for nonlinear systems with various engineering-oriented complexities. Firstly, the main motivation of the ADP-based algorithms is thoroughly discussed, and the way of implementing the ADP-based algorithms is highlighted. Then, the latest research results concerning ADP-based control policy design for nonlinear systems are reviewed in detail, Finally, we conclude the survey by outlining the challenges and possible research topics in the future.

MSC:

93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
90C39 Dynamic programming
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
Full Text: DOI

References:

[1] Abu-Khalaf, M.; Lewis, F. L.; Huang, J., Policy iterations on the Hamilton-Jacobi-Isaacs equation for \(####\) state feedback control with input saturation, IEEE Transaction Automatic Control, 51, 12, 1989-1995 (2006) · Zbl 1366.93147 · doi:10.1109/TAC.2006.884959
[2] Al-Tamimi, A.; Abu-Khalaf, M.; Lewis, F. L., Adaptive critic designs for discrete-time zero-sum games with application to \(####\) control, IEEE Transactions on System, Man, and Cybernetics: Cybernetics, 37, 1, 240-247 (2007) · doi:10.1109/TSMCB.2006.880135
[3] Al-Tamimi, A.; Lewis, F. L.; Abu-Khalaf, M., Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof, IEEE Transactions on System, Man, and Cybernetics: Cybernetics, 38, 4, 943-949 (2008) · doi:10.1109/TSMCB.2008.926614
[4] Balakrishnan, S. N.; Biega, V., Adaptive-critic-based neural networks for aircraft optimal control, Journal of Guidance Control and Dynamics, 19, 4, 893-898 (1996) · Zbl 0875.93396 · doi:10.2514/3.21715
[5] Bao, G.; Ma, L.; Yi, X., Recent advances on cooperative control of heterogeneous multi-agent systems subject to constraints: A survey, Systems Science & Control Engineering, 10, 1, 539-551 (2022) · doi:10.1080/21642583.2022.2074169
[6] Beard, R. W.; Saridis, G. N., Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation, Journal of Optimization Theory and Applications, 96, 3, 589-626 (1998) · Zbl 0916.49021 · doi:10.1023/A:1022664528457
[7] Chen, H.; Tian, E.; Wang, L., State-of-charge estimation of lithium-ion batteries subject to random sensor data unavailability: a recursive filtering approach, IEEE Transactions on Industrial Electronics, 69, 5, 5175-5184 (2022) · doi:10.1109/TIE.2021.3078376
[8] Chen, L.; Chen, Y.; Zhang, N., Synchronization control for chaotic neural networks with mixed delays under input saturations, Neural Process Letters, 53, 5, 3735-3755 (2021) · doi:10.1007/s11063-021-10577-9
[9] Chen, N.; Li, B.; Luo, B.; Gui, W.; Yang, C., Event-triggered optimal control for temperature field of roller kiln based on adaptive dynamic programming, IEEE Transactions on Cybernetics, 53, 5, 2805-2817 (2021) · doi:10.1109/TCYB.2021.3121409
[10] Chen, Y.; Fu, Z.; Fei, S.; Song, S., Delayed anti-windup strategy for input-delay systems with actuator saturations, Journal of the Franklin Institute, 357, 8, 4680-4696 (2020) · Zbl 1437.93073 · doi:10.1016/j.jfranklin.2020.02.008
[11] Chen, Y.; Wang, Z., Local stabilization for discrete-time systems with distributed state delay and fast-varying input delay under actuator saturations, IEEE Transactions on Automatic Control, 66, 3, 1337-1344 (2021) · Zbl 1536.93717 · doi:10.1109/TAC.9
[12] Cheng, P.; Liu, S.; Chen, B.; Yu, L., Multi-agent reinforcement learning for decentralized resilient secondary control of energy storage systems against doS attacks, IEEE Transactions on Smart Grid, 13, 3, 1739-1750 (2022) · doi:10.1109/TSG.2022.3142087
[13] Cheng, T.; Lewis, F. L.; Abu-Khalaf, M., A neural network solution for fixed final time optimal control of nonlinear systems, Automatica, 43, 3, 482-490 (2007) · Zbl 1137.93331 · doi:10.1016/j.automatica.2006.09.021
[14] Cui, Y.; Liu, Y.; Zhang, W.; Alsaadi, F. E., Sampled-based consensus for nonlinear multiagent systems with deception attacks: the decoupled method, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 1, 561-573 (2021) · doi:10.1109/TSMC.6221021
[15] Cui, Y.; Yu, L.; Liu, Y.; Zhang, W.; Alsaadi, F. E., Dynamic event-based non-fragile state estimation for complex networks via partial nodes information, Journal of the Franklin Institute, 358, 18, 10193-10212 (2021) · Zbl 1480.93415 · doi:10.1016/j.jfranklin.2021.10.038
[16] Deb, A. K.; Jayadeva, K.; Gopal, M.; Chandra, S., SVM-based tree-type neural networks as a critic in adaptive critic designs for control, IEEE Transactions on Neural Networks, 18, 4, 1016-1030 (2007) · doi:10.1109/TNN.2007.899255
[17] Deng, Y.; Gong, M.; Ni, T., Double-channel event-triggered adaptive optimal control of active suspension systems, Nonlinear Dynamics, 108, 3435-3448 (2022) · doi:10.1007/s11071-022-07360-3
[18] Ding, D.; Wang, Z.; Han, Q., Neural-network-based output-feedback control with stochastic communication protocols, Automatica, 106, 221-229 (2019) · Zbl 1429.93112 · doi:10.1016/j.automatica.2019.04.025
[19] Ding, D.; Wang, Z.; Han, Q.-L., Neural-network-based consensus control for multiagent systems with input constraints: the event-triggered case, IEEE Transactions on Cybernetics, 50, 8, 3719-3730 (2020) · doi:10.1109/TCYB.6221036
[20] Ding, D.; Wang, Z.; Han, Q.-L.; Wei, G., Neural-network-based output-feedback control under Round-Robin scheduling protocols, IEEE Transactions on Cybernetics, 59, 6, 2372-2384 (2019) · doi:10.1109/TCYB.2018.2827037
[21] Dong, D.; Chen, C.; Tarn, T. J.; Pechen, A.; Rabitz, H., Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning, IEEE Transactions on System, Man, and Cybernetics: Cybernetics, 38, 4, 957-962 (2008) · doi:10.1109/TSMCB.2008.926603
[22] Dong, Y.; Song, Y.; Wei, G., Efficient model-predictive control for nonlinear systems in interval type-2 T-S fuzzy form under round-robin protocol, IEEE Transactions on Fuzzy Systems, 30, 1, 63-74 (2022) · doi:10.1109/TFUZZ.2020.3031394
[23] Enns, R.; Si, J., Helicopter trimming and tracking control using direct neural dynamic programming, IEEE Transactions on Neural Networks, 14, 4, 929-939 (2003) · doi:10.1109/TNN.2003.813839
[24] Ferrari, S.; Steck, J. E.; Chandramohan, R., Adaptive feedback control by constrained approximate dynamic programming, IEEE Transactions on System, Man, and Cybernetics: Cybernetics, 38, 4, 982-987 (2008) · doi:10.1109/TSMCB.2008.924140
[25] Gao, C.; Wang, Z.; He, X.; Yue, D., Sampled-data-based fault-tolerant consensus control for multi-agent systems: A data privacy preserving scheme, Automatica, 133 (2021) · Zbl 1480.93250 · doi:10.1016/j.auto-matica.2021.109847
[26] Gao, H.; Dong, H.; Wang, Z.; Han, F., Recursive minimum-variance filter design for state-saturated complex networks with uncertain coupling strengths subject to deception attacks, IEEE Transactions on Cybernetics, 52, 10, 11121-11132 (2022) · doi:10.1109/TCYB.2021.3067822
[27] Gu, Z.; Shi, P.; Yue, D.; Ding, Z., Decentralized adaptive event-triggered \(####\) filtering for a class of networked nonlinear interconnected systems, IEEE Transactions on Cybernetics, 49, 5, 1570-1579 (2018) · doi:10.1109/TCYB.6221036
[28] Han, F.; Wang, Z.; Dong, H.; Liu, H., Partial-nodes-based scalable \(####\)-consensus filtering with censored measurements over sensor networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 3, 1892-1903 (2021) · doi:10.1109/TSMC.2019.2907649
[29] Han, X.; Qi, H.; Wang, Z.; Xu, N.; Zhao, X.; Zhao, J., An event-triggered integer-mixed adaptive dynamic programming for switched nonlinear systems with bounded inputs, International Journal of Robust and Nonlinear Control, 31, 15, 7280-7297 (2021) · Zbl 1527.93279 · doi:10.1002/rnc.v31.15
[30] Havira, R.; Lewis, J., Computation of quantized controls using differential dynamic programming, IEEE Transactions Automatatic Control, 17, 2, 191-196 (1972) · Zbl 0259.49017 · doi:10.1109/TAC.1972.1099943
[31] He, P.; Jagannathan, S., Reinforcement learning-based output feedback control of nonlinear systems with input constraints, IEEE Transactions on System, Man, and Cybernetics: Cybernetics, 35, 1, 150-154 (2005) · doi:10.1109/TSMCB.2004.840124
[32] He, W.; Mo, Z.; Han, Q.-L.; Qian, F., Secure impulsive synchronization in lipschitz-type multi-agent systems subject to deception attacks, IEEE/CAA Journal of Automatica Sinica, 7, 5, 1326-1334 (2020) · doi:10.1109/JAS.2020.1003297
[33] Hou, N.; Li, J.; Liu, H.; Ge, Y.; Dong, H., Finite-horizon resilient state estimation for complex networks with integral measurements from partial nodes, Science China-Information Sciences, 65 (2022) · doi:10.1007/s11432-020-3243-7
[34] Hu, C.; Zhao, L.; Qu, G., Event-triggered model predictive adaptive dynamic programming for road intersection path planning of unmanned ground vehicle, IEEE Transactions on Vehicular Technology, 70, 11, 11228-11243 (2021) · doi:10.1109/TVT.2021.3111692
[35] Huang, X.; Dong, G., ADP-based robust resilient control of partially unknown nonlinear systems via cooperative interaction design, IEEE Transactions on Systems Man Cybernetics: Systems, 51, 12, 7466-7474 (2021) · doi:10.1109/TSMC.2020.2970040
[36] Jiang, B.; Dong, H.; Shen, Y.; Mu, S., Encoding-decoding-based recursive filtering for fractional-order systems, IEEE/CAA Journal of Automatica Sinica, 9, 6, 1103-1106 (2022) · doi:10.1109/JAS.2022.105644
[37] Jiang, B.; Gao, H.; Han, F.; Dong, H., Recursive filtering for nonlinear systems subject to measurement outliers, Science China-Information Sciences, 64 (2021) · doi:10.1007/s11432-020-3135-y
[38] Khankalantary, S.; Izadi, I.; Sheikholeslam, F., Robust ADP-based solution of a class of nonlinear multi-agent systems with input saturation and collision avoidance constraints, ISA Transactions, 107, 52-62 (2020) · doi:10.1016/j.isatra.2020.07.029
[39] Kim, Y. J.; Lim, M. T., Parallel optimal control for weakly coupled nonlinear systems using successive Galerkin approximation, IEEE Transactions on Automatic Control, 53, 6, 1542-1547 (2008) · Zbl 1367.65093 · doi:10.1109/TAC.2008.921047
[40] Lewis, F. L.; Vrabie, D., Reinforcement learning and adaptive dynamic programming for feedback control, IEEE Circuits and Systems Magazine, 9, 3, 40-58 (2009) · doi:10.1109/MCAS.7384
[41] Li, J.; Dong, H.; Shen, Y.; Hou, N., Encoding-decoding strategy based resilient state estimation for bias-corrupted stochastic nonlinear systems, ISA Transactions, 127, 80-87 (2022) · doi:10.1016/j.isatra.2022.04.048
[42] Li, J.; Tian, X.; Wei, G., Protocol-based control for nonlinear systems with environment-dependent energy harvesting sensors: an average dwell-time method, Nonlinear Analysis: Hybrid Systems, 46, 101241 (2022) · Zbl 1500.93131 · doi:10.1016/j.nahs.2022.101241
[43] Li, Z.; Hu, J.; Li, J., Distributed filtering for delayed nonlinear system with random sensor saturation: A dynamic event-triggered approach, Systems Science & Control Engineering, 9, 1, 440-454 (2021) · doi:10.1080/21642583.2021.1919935
[44] Lian, B.; Xue, W.; Lewis, F. L.; Chai, T., Online inverse reinforcement learning for nonlinear systems with adversarial attacks, International Journal of Robust and Nonlinear Control, 31, 14, 6646-6667 (2021) · Zbl 1527.93208 · doi:10.1002/rnc.v31.14
[45] Liang, M.; Wang, D.; Liu, D., Neuro-optimal control for discrete stochastic processes via a novel policy iteration algorithm, IEEE Transactions on System, Man, and Cybernetics: Systems, 50, 11, 3972-3985 (2020) · doi:10.1109/TSMC.6221021
[46] Liu, D.; Zhang, Y.; Zhang, H., A self-learning call admission control scheme for CDMA cellular networks, IEEE Transactions on Neural Networks, 16, 5, 1219-1228 (2005) · doi:10.1109/TNN.2005.853408
[47] Liu, F.; Jiang, C.; Xiao, W., Multistep prediction-based adaptive dynamic programming sensor scheduling approach for collaborative target tracking in energy harvesting wireless sensor networks, IEEE Transactions on Automation Science and Engineering, 18, 2, 693-704 (2021) · doi:10.1109/TASE.2020.3019567
[48] Liu, H.; Wang, Z.; Fei, W.; Li, J., Resilient \(####\) state estimation for discrete-time stochastic delayed memristive neural networks: a dynamic event-triggered mechanism, IEEE Transactions on Cybernetics, 52, 5, 3333-3341 (2022) · doi:10.1109/TCYB.2020.3021556
[49] Liu, P.; Zhang, H.; Ren, H.; Liu, C., Online event-triggered adaptive critic design for multi-player zero-sum games of partially unknown nonlinear systems with input constraints, Neurocomputing, 462, 309-319 (2021) · doi:10.1016/j.neucom.2021.07.058
[50] Liu, S.; Wang, Z.; Wang, L.; Wei, G., \(####\) pinning control of complex dynamical networks under dynamic quantization effects: a coupled backward Riccati equation approach, IEEE Transactions on Cybernetics, 52, 8, 7377-7387 (2022) · doi:10.1109/TCYB.2020.3021982
[51] Liu, S.; Zhao, X.; Tian, E.; Wei, G., Distributed recursive filtering under random access protocols: a multirate strategy, International Journal of Robust and Nonlinear Control, 32, 12, 7132-7148 (2022) · Zbl 1528.93230 · doi:10.1002/rnc.v32.12
[52] Liu, Y.; Shen, B.; Sun, J., Stubborn state estimation for complex-valued neural networks with mixed time delays: the discrete time case, Neural Computing and Applications, 34, 7, 5449-5464 (2022) · doi:10.1007/s00521-021-06707-y
[53] Liu, Y.; Shen, B.; Zhang, P., Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters, Neural Networks, 150, 181-193 (2022) · Zbl 1525.93327 · doi:10.1016/j.neunet.2022.02.028
[54] Ma, L.; Wang, Z.; Cai, C.; Alsaadi, F. E., A dynamic event-triggered approach to \(####\) control for discrete-time singularly perturbed systems with time-delays and sensor saturations, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 11, 6614-6625 (2021) · doi:10.1109/TSMC.2019.2958529
[55] Ma, L.; Wang, Z.; Hu, J.; Han, Q.-L., Probability-guaranteed envelope-constrained filtering for nonlinear systems subject to measurement outliers, IEEE Transactions on Automatic Control, 66, 7, 3274-3281 (2021) · Zbl 1467.93314 · doi:10.1109/TAC.2020.3016767
[56] Ma, L.; Wang, Z.; Liu, H.; Alsaadi, F. E., Neural-network-based filtering for a general class of nonlinear systems under dynamically bounded innovations over sensor networks, IEEE Transactions on Network Science and Engineering, 9, 3, 1395-1408 (2022) · doi:10.1109/TNSE.2022.3144484
[57] Ming, Z.; Zhang, H.; Luo, Y.; Wang, W., Dynamic event-based control for stochastic optimal regulation of nonlinear networked control systems, IEEE Transactions on Neural Networks and Learning Systems (2022) · doi:10.1109/TNNLS.2022.3140478
[58] Mishra, A.; Ghosh, S., Simultaneous identification and optimal tracking control of unknown continuous-time systems with actuator constraints, International Journal of Control, 95, 8, 2005-2023 (2022) · Zbl 1497.93047 · doi:10.1080/00207179.2021.1890824
[59] Mohahegi, S.; Venayagamoorth, G. K.; Harley, R. H., Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system, IEEE Transactions on Power Systems, 21, 4, 1744-1754 (2006) · doi:10.1109/TPWRS.2006.882467
[60] Mu, C.; Wang, K.; Ni, Z., Adaptive learning and sampled-control for nonlinear game systems using dynamic event-triggering strategy, IEEE Transactions on Neural Networks and Learning Systems, 33, 9, 4437-4450 · Zbl 1352.35115 · doi:10.1109/TNNLS.2021.3057438
[61] Ni, Z.; He, H.; Zhong, X.; Prokhorov, D. V., Model-free dual heuristic dynamic programming, IEEE Transactions on Neural Networks and Learning Systems, 26, 8, 1834-1839 (2015) · doi:10.1109/TNNLS.2015.2424971
[62] Ning, B.; Han, Q.-L.; Ding, L., Distributed finite-time secondary frequency and voltage control for islanded microgrids with communication delays and switching topologies, IEEE Transactions on Cybernetics, 51, 8, 3988-3999 (2021) · doi:10.1109/TCYB.2020.3003690
[63] Niu, H.; Bhowmick, C.; Jagannathan, S., Attack detection and approximation in nonlinear networked control systems using neural networks, IEEE Transactions on Neural Networks and Learning Systems, 31, 1, 235-245 (2020) · doi:10.1109/TNNLS.5962385
[64] Padhi, R.; Unnikrishnan, N.; Wang, X.; Balakrishnan, S. N., A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems, Neural Networks, 19, 10, 1648-1660 (2006) · Zbl 1120.90065 · doi:10.1016/j.neunet.2006.08.010
[65] Pang, K.; Ma, L.; Bai, H.; Xue, S., Finite-time containment control for nonlinear second-order multiagent system under directed topology, IEEE Systems Journal, 16, 4, 6175-6184 (2021) · doi:10.1109/JSYST.2021.3130611
[66] Pinto, E. R.; Nepomuceno, E. G.; Campanharo, A. S. L. O., Individual-based modelling of animal brucellosis spread with the use of complex networks, International Journal of Network Dynamics and Intelligence, 1, 1, 120-129 (2022) · doi:10.53941/ijndi0101011
[67] Prokhorov, D. V.; Santiago, R.; Wunsch, D. C., Adaptive critic designs: a case study for neurocontrol, Neural Networks, 8, 9, 1367-1372 (1995) · doi:10.1016/0893-6080(95)00042-9
[68] Qian, W.; Gao, Y.; Yang, Y., Global consensus of multiagent systems with internal delays and communication delays, IEEE Transactions on Systems,Man,and Cybernetics: Systems, 49, 10, 1961-1970 (2019) · doi:10.1109/TSMC.6221021
[69] Qian, W.; Li, Y.; Zhao, Y.; Chen, Y., New optimal method for \(####-####\) state estimation of delayed neural networks, IEEE Transactions on Neural Networks and Learning Systems, 415, 258-265 (2020) · doi:10.1016/j.neucom.2020.06.118
[70] Qian, W.; Xing, W.; Fei, S., \(####\) state estimation for neural networks with general activation function and mixed time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 32, 9, 3909-3918 (2021) · doi:10.1109/TNNLS.2020.3016120
[71] Qu, B.; Wang, Z.; Shen, B.; Dong, H., Distributed state estimation for renewable energy microgrids with sensor saturations, Automatica, 131 (2021) · Zbl 1478.93683 · doi:10.1016/j.automatica.2021.109730
[72] Ren, H.; Zhang, H.; Mu, Y.; Duan, J., Off-policy synchronous iteration IRL method for multi-player zero-sum games with input constraints, Neurocomputing, 378, 413-421 (2020) · doi:10.1016/j.neucom.2019.10.075
[73] Rizvi, S. A. A.; Lin, Z., Adaptive dynamic programming for model-free global stabilization of control constrained continuous-time systems, IEEE Transactions on Cybernetics, 52, 2, 1048-1060 (2022) · doi:10.1109/TCYB.2020.2989419
[74] Shen, B.; Wang, Z.; Tan, H.; Chen, H., Robust fusion filtering over multisensor systems with energy harvesting constraints, Automatica, 131 (2021) · Zbl 1478.93694 · doi:10.1016/j.automatica.2021.109782
[75] Shen, Y.; Wang, Z.; Shen, B.; Han, Q.-L., Recursive state estimation for networked multi-rate multi-sensor systems with distributed time-delays under the Round-Robin protocol, IEEE Transactions on Cybernetics, 52, 6, 4136-4146 (2022) · doi:10.1109/TCYB.2020.3021350
[76] Shervais, S.; Shannon, T. T.; Lendaris, G. G., Intelligent supply chain management using adaptive critic learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 33, 2, 235-244 (2003) · doi:10.1109/TSMCA.2003.809214
[77] Shi, H.; Wang, M.; Wang, C., Model-based event-triggered neural learning control for discrete-time strict-feedback systems, International Journal of Robust and Nonlinear Control, 32, 13, 7611-7630 (2022) · Zbl 1528.93142 · doi:10.1002/rnc.v32.13
[78] Shi, J.; Yue, D.; Xie, X., Adaptive optimal tracking control for nonlinear continuous-time systems with time delay using value iteration algorithm, Neurocomputing, 396, 172-178 (2020) · doi:10.1016/j.neucom.2018.07.098
[79] Song, B.; Miao, H.; Xu, L., Path planning for coal mine robot via improved ant colony optimization algorithm, Systems Science & Control Engineering, 9, 1, 283-289 (2021) · doi:10.1080/21642583.2021.1901158
[80] Song, R.; Liu, L., Event-triggered constrained robust control for partly-unknown nonlinear systems via ADP, Neurocomputing, 404, 294-303 (2020) · doi:10.1016/j.neucom.2020.05.012
[81] Song, R.; Xiao, W.; Wei, Q., Multi-objective optimal control for a class of nonlinear time-delay systems via adaptive dynamic programming, Soft Computing, 17, 11, 2109-2115 (2013) · Zbl 1316.49038 · doi:10.1007/s00500-013-1111-x
[82] Su, H.; Zhang, H.; Jiang, H.; Wen, Y., Decentralized event-triggered adaptive control of discrete-time nonzero-sum games over wireless sensor-actuator networks with input constraints, IEEE Transactions on Neural Networks and Learning Systems, 31, 10, 4254-4266 (2020) · doi:10.1109/TNNLS.5962385
[83] Sun, B.; van Kampen, E.-J., Intelligent adaptive optimal control using incremental model-based global dual heuristic programming subject to partial observability, Applied Soft Computing, 103, 107153 (2021) · doi:10.1016/j.asoc.2021.107153
[84] Sun, J.; Shen, B.; Liu, Y., A resilient outlier-resistant recursive filtering approach to time-delayed spatial-temporal systems with energy harvesting sensors, ISA Transactions, 127, 41-49 (2022) · doi:10.1016/j.isatra.2021.12.040
[85] Tan, H.; Shen, B.; Li, Q., Fusion estimation for stochastic uncertain systems with time-correlated Rician fading channels, Journal of the Franklin Institute, 359, 5, 2340-2358 (2022) · Zbl 1485.93574 · doi:10.1016/j.jfranklin.2022.01.033
[86] Tan, L. N., Distributed optimal control for nonholonomic systems with input constraints and uncertain interconnections, Nonlinear Dynamics, 93, 2, 801-817 (2018) · Zbl 1398.93246 · doi:10.1007/s11071-018-4228-8
[87] Tao, H.; Tan, H.; Chen, Q.; Liu, H.; Hu, J., \(####\) state estimation for memristive neural networks with randomly occurring doS attacks, Systems Science & Control Engineering, 10, 1, 154-165 (2022) · doi:10.1080/21642583.2022.2048322
[88] Tesauro, G., Practical issues in temporal difference learning, Machine Learning, 8, 3-4, 257-277 (1992) · Zbl 0772.68075 · doi:10.1007/BF00992697
[89] Tian, E.; Yue, D.; Peng, C., Reliable control for networked control systems with probabilistic actuator fault and random delays, Journal of the Franklin Institute, 347, 10, 1907-1926 (2010) · Zbl 1206.93108 · doi:10.1016/j.jfranklin.2010.10.010
[90] Vamvodakis, K. G.; Lewis, F. L., Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem, Automatica, 46, 5, 878-888 (2010) · Zbl 1191.49038 · doi:10.1016/j.automatica.2010.02.018
[91] Wang, D.; Hu, L.; Zhao, M.; Qiao, J., Adaptive critic for event-triggered unknown nonlinear optimal tracking design with wastewater treatment applications, IEEE Transactions on Neural Networks and Learning Systems (2021) · doi:10.1109/TNNLS.2021.3135405
[92] Wang, F.-Y.; Zhang, H.; Liu, D., Adaptive dynamic programming: an introduction, IEEE Computational Intelligence Magazine, 4, 2, 39-47 (2009) · doi:10.1109/MCI.2009.932261
[93] Wang, L.; Tian, E.; Wang, C.; Liu, S., Secure estimation against malicious attacks for lithium-ion batteries under cloud environments, IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 6, 4136-4146 (2022) · doi:10.1109/TCSI.2022.3187725
[94] Wang, M.; Wang, L., Finite-time performance guaranteed event-triggered adaptive control for nonlinear systems with unknown control direction, Journal of the Franklin Institute, 359, 6, 2463-2486 (2022) · Zbl 1485.93364 · doi:10.1016/j.jfranklin.2022.02.003
[95] Wang, M.; Zou, Y.; Yang, C., System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer, IEEE Transactions on Cybernetics, 52, 3, 1479-1489 (2022) · doi:10.1109/TCYB.2020.2988897
[96] Wang, X.; Ding, D.; Dong, H.; Yi, X., PI-based security control against joint sensor and controller attacks and applications in load frequency control, IEEE Transactions on System, Man, and Cybernetics: Systems, 53, 2, 970-980 (2022) · doi:10.1109/TSMC.2022.3190005
[97] Wang, X.; Ding, D.; Dong, H.; Yi, X., Supplementary control for quantized discrete-time nonlinear systems under goal representation heuristic dynamic programming, IEEE Transactions on Neural Networks and Learning Systems (2022) · doi:10.1109/TNNLS.2022.3201521
[98] Wang, X.; Ding, D.; Dong, H.; Zhang, X.-M., Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol, IEEE/CAA Journal of Automatica Sinica, 8, 4, 766-778 (2021) · doi:10.1109/JAS.6570654
[99] Wang, X.; Ding, D.; Ge, X.; Han, Q.-L., Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: the adaptive event-triggered case, International Journal of Robust and Nonlinear Control, 32, 5, 2760-2779 (2022) · Zbl 1527.93298 · doi:10.1002/rnc.v32.5
[100] Wang, X.; Sun, Y.; Ding, D., Adaptive dynamic programming for networked control systems under communication constraints: a survey of trends and techniques, International Journal of Network Dynamics and Intelligence, 1, 1, 85-98 (2022) · doi:10.53941/ijndi0101008
[101] Wei, Q.; Lu, J.; Zhou, T.; Cheng, X.; Wang, F.-Y., Event-triggered near-optimal control of discrete-time constrained nonlinear systems with application to a boiler-turbine system, IEEE Transactions on Industrial Informatics, 18, 6, 3926-3935 (2022) · doi:10.1109/TII.2021.3116084
[102] Wei, Q.; Wang, D.; Zhang, D., Dual iterative adaptive dynamic programming for a class of discrete-time nonlinear systems with time-delays, Neural Computing and Applications, 23, 7-8, 1851-1863 (2013) · doi:10.1007/s00521-012-1188-7
[103] Wu, X.; Wang, C., Event-driven adaptive near-optimal tracking control of the robot in aircraft skin inspection, International Journal of Robust and Nonlinear Control, 31, 7, 2593-2613 (2021) · Zbl 1526.93163 · doi:10.1002/rnc.v31.7
[104] Xiao, S.; Ge, X.; Han, Q.-L.; Zhang, Y., Secure distributed adaptive platooning control of automated vehicles over vehicular Ad-Hoc networks under denial-of-service attacks, IEEE Transactions on Cybernetics, 52, 11, 12003-12015 (2021) · doi:10.1109/TCYB.2021.3074318
[105] Xie, X.; Zhou, Q.; Yue, D.; Li, H., Relaxed control design of discrete-time Takagi-Sugeno fuzzy systems: an event-triggered real-time scheduling approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 12, 2251-2262 (2017) · doi:10.1109/TSMC.2017.2737542
[106] Xu, D.; Wang, Q.; Li, Y., Optimal guaranteed cost tracking of uncertain nonlinear systems using adaptive dynamic programming with concurrent learning, International Journal of Control, Automation and Systems, 18, 5, 1116-1127 (2020) · doi:10.1007/s12555-019-0165-7
[107] Xu, H.; Jagannathan, S.; Lewis, F. L., Stochastic optimal design for unknown linear discrete-time system zero-sum games in input-output form under communication constraints, Asian Journal of Control, 16, 5, 1263-1276 (2014) · Zbl 1305.93210 · doi:10.1002/asjc.v16.5
[108] Xu, H.; Zhao, Q.; Jagannathan, S., Finite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete-time systems with input constraint, IEEE Transactions on Neural Networks and Learning Systems, 26, 8, 1776-1788 (2015) · doi:10.1109/TNNLS.2015.2409301
[109] Xu, J.; Sheng, L.; Gao, M., Fault estimation for nonlinear systems with sensor gain degradation and stochastic protocol based on strong tracking filtering, Systems Science & Control Engineering, 9, S2, 60-70 (2021) · doi:10.1080/21642583.2020.1833789
[110] Xu, J.; Wang, J.; Rao, J.; Zhong, Y.; Wang, H., Adaptive dynamic programming for optimal control of discrete-time nonlinear system with state constraints based on control barrier function, International Journal of Robust and Nonlinear Control, 32, 6, 3408-3424 (2022) · Zbl 1527.93233 · doi:10.1002/rnc.v32.6
[111] Xu, Y.; Lv, W.; Lin, W.; Lu, R.; Quevedo, D. E., On extended state estimation for nonlinear uncertain systems with round-robin protocol, Automatica, 138 (2022) · Zbl 1485.93229 · doi:10.1016/j.automatica.2021.110154
[112] Xu, Y.; Yao, Z.; Lu, R.; Ghosh, B. K., A novel fixed-time protocol for first-order consensus tracking with disturbance rejection, IEEE Transactions on Automatic Control, 67, 11, 6180-6186 (2022) · Zbl 1541.93325 · doi:10.1109/TAC.2021.3131549
[113] Xue, S.; Luo, B.; Liu, D.; Yang, Y., Constrained event-triggered \(####\) control based on adaptive dynamic programming with concurrent learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 1, 357-369 (2022) · doi:10.1109/TSMC.2020.2997559
[114] Yadav, V.; Padhi, R.; Balakrishnan, S. N., Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks, IEEE Transactions on Neural Networks, 18, 4, 1115-1128 (2007) · doi:10.1109/TNN.2007.899229
[115] Yang, H.; Li, Y.; Yuan, H.; Liu, Z., Adaptive dynamic programming for security of networked control systems with actuator saturation, Information Sciences, 460, 51-64 (2018) · Zbl 1448.93124 · doi:10.1016/j.ins.2018.05.039
[116] Yang, X.; Wei, Q., Adaptive critic learning for constrained optimal event-triggered control with discounted cost, IEEE Transactions on Neural Networks and Learning Systems, 32, 1, 91-104 (2021) · doi:10.1109/TNNLS.5962385
[117] Yang, X.; Zhou, Y.; Dong, N.; Wei, Q., Adaptive critics for decentralized stabilization of constrained-input nonlinear interconnected systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 7, 4187-4199 (2021) · doi:10.1109/TSMC.2021.3089944
[118] Yao, M.; Wei, G.; Ding, D.; Li, W., Output-feedback control for stochastic impulsive systems under Round-Robin protocol, Automatica, 143 (2022) · Zbl 1497.93217 · doi:10.1016/j.automatica.2022.110394
[119] Yuan, Y.; Wang, Z.; Yu, Y.; Guo, L.; Yang, H., Active disturbance rejection control for a pneumatic motion platform subject to actuator saturation: an extended state observer approach, Automatica, 107, 353-361 (2019) · Zbl 1429.93086 · doi:10.1016/j.automatica.2019.05.056
[120] Yuan, Y.; Yuan, H.; Ho, D. W. C.; Guo, L., Resilient control of wireless networked control system under denial-of-service attacks: A cross-layer design approach, IEEE Transactions on Cybernetics, 50, 1, 48-60 (2020) · doi:10.1109/TCYB.6221036
[121] Zhang, B.; Song, Y., Model-predictive control for Markovian jump systems under asynchronous scenario: an optimizing prediction dynamics approach, Transactions on Automatic Control, 67, 9, 4900-4907 (2022) · Zbl 1537.93217 · doi:10.1109/TAC.2022.3164832
[122] Zhang, B.; Song, Y.; Cai, H., An efficient model predictive control for Markovian jump systems with all unstable modes, Nonlinear Analysis: Hybrid Systems, 44, 101117 (2022) · Zbl 1485.93167 · doi:10.1016/j.nahs.2021.101117
[123] Zhang, H.; Song, R.; Wei, Q.; Zhang, T., Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming, IEEE Transactions on Neural Networks, 22, 12, 1851-1862 (2011) · doi:10.1109/TNN.2011.2172628
[124] Zhang, H.; Wei, Q.; Luo, Y., A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm, IEEE Transactions on Systems, Man, and Cybernetics: Cybernetics, 38, 4, 937-942 (2008) · doi:10.1109/TSMCB.2008.920269
[125] Zhang, H.; Yue, D.; Zhao, W.; Hu, S.; Dou, C., Distributed optimal consensus control for multiagent systems with input delay, IEEE Transactions on Cybernetics, 48, 6, 1747-1759 (2018) · doi:10.1109/TCYB.2017.2714173
[126] Zhang, Q.; Zhou, Y., Recent advances in non-Gaussian stochastic systems control theory and its applications, International Journal of Network Dynamics and Intelligence, 1, 1, 111-119 (2022) · doi:10.53941/ijndi0101010
[127] Zhang, S.; Ma, L.; Yi, X., Model-free adaptive control for nonlinear multi-agent systems with encoding-decoding mechanism, IEEE Transactions on Signal and Information Processing Over Networks, 8, 489-498 (2022) · doi:10.1109/TSIPN.2022.3174966
[128] Zhang, S.; Zhao, B.; Zhang, Y., Event-triggered control for input constrained non-affine nonlinear systems based on neuro-dynamic programming, Neurocomputing, 440, 175-184 (2021) · doi:10.1016/j.neucom.2021.01.116
[129] Zhang, W.; Sheng, L.; Gao, M., Finite-horizon \(####\) state estimation for time-varying complex networks based on the outputs of partial nodes, Systems Science & Control Engineering, 9, S2, 48-59 (2021) · doi:10.1080/21642583.2020.1837691
[130] Zhang, W.; Tang, Y.; Zheng, W.; Liu, Y., Stability of time-varying systems with delayed impulsive effects, International Journal of Robust and Nonlinear Control, 31, 16, 7825-7843 (2021) · Zbl 1527.93369 · doi:10.1002/rnc.v31.16
[131] Zhang, W.; Yi, W., Composite adaptive dynamic programming for missile interception systems with multiple constraints and less sensor requirement, ISA Transactions, 117, 40-53 (2021) · doi:10.1016/j.isatra.2021.01.040
[132] Zhang, X.; Zhao, B.; Liu, D.; Zhang, S., Event-triggered optimal tracking control of multiplayer unknown nonlinear systems via adaptive critic designs, International Journal of Robust and Nonlinear Control, 32, 1, 29-51 (2022) · Zbl 1527.93306 · doi:10.1002/rnc.v32.1
[133] Zhang, X.-M.; Han, Q.-L.; Ge, X., Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to \(####\) filtering for linear systems with time-varying delays, Automatica, 125 (2021) · Zbl 1461.93515 · doi:10.1016/j.automatica.2020.109390
[134] Zhao, B.; Jia, L.; Xia, H.; Li, Y., Adaptive dynamic programming-based stabilization of nonlinear systems with unknown actuator saturation, Nonlinear Dynamics, 93, 4, 2089-2103 (2018) · Zbl 1398.93305 · doi:10.1007/s11071-018-4309-8
[135] Zhao, D.; Wang, Z.; Han, Q.-L.; Wei, G., Proportional-integral observer design for uncertain time-delay systems subject to deception attacks: an outlier-resistant approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 8, 5152-5164 (2022) · doi:10.1109/TSMC.2021.3117742
[136] Zhao, Q.; Xu, H.; Jagannathan, S., Optimal control of uncertain quantized linear discrete-time systems, International Journal of Adaptive Control and Signal Processing, 29, 3, 325-345 (2015) · Zbl 1330.93150 · doi:10.1002/acs.v29.3
[137] Zhao, T.; Liu, Y.; Li, Z.; Su, C.-Y.; Feng, Y., Adaptive control and optimization of mobile manipulation subject to input saturation and switching constraints, IEEE Transactions on Automation Science and Engineering, 16, 4, 1543-1555 (2019) · doi:10.1109/TASE.8856
[138] Zhao, Y.; Dai, X.; Gong, D.; Lv, X.; Liu, Y., Event-triggered adaptive dynamic programming consensus tracking control for discrete-time multiagent systems, Complexity, 6028054, 1-14 (2022) · doi:10.1155/2022/6028054
[139] Zhu, J.; Zhang, P.; Hou, Y., Adaptive dynamic programming-based optimal regulation on input-constrained nonlinear time-delay systems, Neural Computing and Applications, 33, 19, 13039-13047 (2021) · doi:10.1007/s00521-021-06000-y
[140] Zhu, K.; Wang, Z.; Wei, G.; Liu, X., Adaptive set-membership state estimation for nonlinear systems under bit rate allocation mechanism: A neural-network-based approach, IEEE Transactions on Neural Networks and Learning Systems (2022) · doi:10.1109/TNNLS.2022.3149540
[141] Zhu, M.; Martinez, S., On the performance analysis of resilient networked control systems under replay attacks, IEEE Transactions on Automatic Control, 59, 3, 804-808 (2014) · Zbl 1360.93459 · doi:10.1109/TAC.2013.2279896
[142] Zhu, S.; Tian, E.; Xu, D.; Liu, J., An adaptive torus-event-based controller design for networked T-S fuzzy systems under deception attacks, International Journal of Robust and Nonlinear Control, 32, 6, 3425-3441 (2022) · Zbl 1527.93242 · doi:10.1002/rnc.v32.6
[143] Zhu, Y.; Zhao, D.; He, H.; Ji, J., Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming, IEEE Transactions on Industrial Electronics, 64, 5, 4101-4109 (2017) · doi:10.1109/TIE.2016.2597763
[144] Zhu, Z.; Zeng, F.; Qi, G.; Li, Y.; Hou, J.; Mazur, N., Power system structure optimization based on reinforcement learning and sparse constraints under doS attacks in cloud environments, Simulation Modelling Practice and Theory, 110 (2021) · doi:10.1016/j.simpat.2021.102272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.