×

Normalized solutions for pseudo-relativistic Schrödinger equations. (English) Zbl 07919832


MSC:

35J61 Semilinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] L. Hörmander, The analysis of linear partial differential operators. III: Pseudo-differential operators, Reprint of the 1994 edition, Classics in Mathematics, Springer, Berlin, 2007. · Zbl 1115.35005
[2] E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997.
[3] M. Fall, V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867. https://doi.org/10.1006/jfan.1999.3462 doi: 10.1006/jfan.1999.3462 · Zbl 1336.35356 · doi:10.1006/jfan.1999.3462
[4] N. Aronszajn, K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble), 11 (1961), 385-475. https://doi.org/10.5802/aif.116 · Zbl 0102.32401 · doi:10.5802/aif.116
[5] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. II, Based on notes left by Harry Bateman, Reprint of the 1953 original, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. · Zbl 0542.33001
[6] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 268 (2000), 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2 · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[7] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108 · doi:10.1103/PhysRevE.66.056108
[8] E. Lieb, H. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174. https://doi.org/10.1007/BF01217684 doi: 10.1007/BF01217684 · Zbl 0641.35065 · doi:10.1007/BF01217684
[9] E. Lieb, H. Yau, The stability and instability of relativistic matter, Comm. Math. Phys., 118 (1988), 177-213. https://doi.org/10.1007/BF01218577 doi: 10.1007/BF01218577 · Zbl 0686.35099 · doi:10.1007/BF01218577
[10] V. Ambrosio, Existence of heteroclinic solutions for a pseudo-relativistic Allen-Cahn type equation, Adv. Nonlinear Stud, 15 (2015), 395-414. https://doi.org/10.1515/ans-2015-0207 doi: 10.1515/ans-2015-0207 · Zbl 1326.35379 · doi:10.1515/ans-2015-0207
[11] W. Choi, J. Seok, Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations, arXiv: 1506.00791. https://doi.org/10.1063/1.4941037 · Zbl 1332.81039 · doi:10.1063/1.4941037
[12] V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Rend. Lincei. Mat. Appl., 22 (2011), 51-72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587 · Zbl 1219.35292 · doi:10.4171/RLM/587
[13] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[14] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. · Zbl 0856.49001
[15] C. Yang, C. Tang, Sign-changing solutions for the Schrödinger-Poisson system with concave-convex nonlinearities in RN,Commun. Anal. Mech., 15 (2023), 638-657. https://doi.org/10.3934/cam.2023032 · Zbl 07919370 · doi:10.3934/cam.2023032
[16] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal, 28 (1997), 1633-1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[17] C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in RN,Calc. Var. Partial Differential Equations, 61 (2022), 18. https://doi.org/10.1007/s00526-021-02123-1 · Zbl 1481.35141 · doi:10.1007/s00526-021-02123-1
[18] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 · Zbl 1440.35311 · doi:10.1016/j.jfa.2020.108610
[19] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations, 269 (2020), 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016 · Zbl 1440.35312 · doi:10.1016/j.jde.2020.05.016
[20] S. Deng, Q. Wu, Existence of normalized solutions for the Schrödinger equation, Commun. Anal. Mech., 15 (2023), 575-585. https://doi.org/10.3934/cam.2023028 doi: 10.3934/cam.2023028 · Zbl 07887826 · doi:10.3934/cam.2023028
[21] Q. Li, W. Zou, The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases, Adv. Nonlinear Anal, 11 (2022), 1531-1551. https://doi.org/10.1515/anona-2022-0252 doi: 10.1515/anona-2022-0252 · Zbl 1498.35197 · doi:10.1515/anona-2022-0252
[22] W. Wang, Q. Li, J. Zhou, Y. Li, Normalized solutions for p-Laplacian equations with a L2-supercritical growth, Ann. Funct. Anal., 12 (2021), 1-19. https://doi.org/10.1007/s43034-020-00101-w doi: 10.1007/s43034-020-00101-w · Zbl 1455.35126 · doi:10.1007/s43034-020-00101-w
[23] S. Yao, H. Chen, V.D. Rˇadulescu, J. Sun, Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation, SIAM J. Math. Anal., 54 (2022), 3696-3723. https://doi.org/10.1137/21M1463136 doi: 10.1137/21M1463136 · Zbl 1497.35145 · doi:10.1137/21M1463136
[24] L. Jeanjean, T. Luo, Z. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations, 259 (2015), 3894-3928. https://doi.org/10.1016/j.jde.2015.05.008 doi: 10.1016/j.jde.2015.05.008 · Zbl 1377.35074 · doi:10.1016/j.jde.2015.05.008
[25] T. Bartsch, S. de Valeriola, Normalized solutions of nonlinear Schrödinger equations, Arch. Math., 100 (2013), 75-83. https://doi.org/10.48550/arXiv.1209.0950 doi: 10.48550/arXiv.1209.0950 · Zbl 1260.35098 · doi:10.48550/arXiv.1209.0950
[26] J. Bellazzini, L. Jeanjean, T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339. https://doi.org/10.1112/plms/pds072 doi: 10.1112/plms/pds072 · Zbl 1284.35391 · doi:10.1112/plms/pds072
[27] X. Luo, Normalized standing waves for the Hartree equations, J. Differential Equations, 267 (2019), 4493-4524. https://doi.org/10.1016/j.jde.2019.05.009 doi: 10.1016/j.jde.2019.05.009 · Zbl 1420.35097 · doi:10.1016/j.jde.2019.05.009
[28] C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a Schrödinger equation with critical in RN, arXiv: 2103.07940, 2021. https://doi.org/10.48550/arXiv.2103.07940 · doi:10.48550/arXiv.2103.07940
[29] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236. https://doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034 · Zbl 1084.26009 · doi:10.1016/j.jmaa.2004.03.034
[30] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[31] S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of Rn, Scuola Normale Superiore, 2017. https://doi.org/10.1007/978-88-7642-601-8 · Zbl 1375.49001 · doi:10.1007/978-88-7642-601-8
[32] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. https://doi.org/10.48550/arXiv.2105.13632 doi: 10.48550/arXiv.2105.13632 · Zbl 1290.35304 · doi:10.48550/arXiv.2105.13632
[33] P. Stinga, J. Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680 · Zbl 1209.26013 · doi:10.1080/03605301003735680
[34] V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502. https://doi.org/10.1063/1.4949352 doi: 10.1063/1.4949352 · Zbl 1480.81043 · doi:10.1063/1.4949352
[35] V. Ambrosio, Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth, arXiv preprint arXiv: 2105.13632, 2021. https://doi.org/10.48550/arXiv.2105.13632 · doi:10.48550/arXiv.2105.13632
[36] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBME Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986. · Zbl 0609.58002
[37] V. Bogachev, Measure Theory, Vol. II, Springer-Verlag, Berlin, 2007. · Zbl 1120.28001
[38] X. Zhang, B. Zhang, D. Repovs, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal, 142 (2016), 48-68. https://doi.org/10.1016/j.na.2016.04.012 doi: 10.1016/j.na.2016.04.012 · Zbl 1338.35013 · doi:10.1016/j.na.2016.04.012
[39] L. Jeanjean, S. Lu, Nonradial normalized solutions for nonlinear scalar field equations, Nonlinearity, 32 (2019), 4942-4966. https://doi.org/10.1088/1361-6544/ab435e doi: 10.1088/1361-6544/ab435e · Zbl 1429.35101 · doi:10.1088/1361-6544/ab435e
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.