×

Two forms schemes of deterministic remote state preparation for four-qubit cluster-type state. (English) Zbl 1433.81046

Summary: Two deterministic schemes are put forward to preparing an arbitrary four-qubit cluster-type state remotely by using two Bell states as quantum channel. The coefficients of the prepared states can be not only real, but also complex. To accomplish the schemes, we introduce some novel sets of ingenious measurement basis vectors. Especially, for complex coefficients case, we give two different forms schemes. The receiver will reconstruct the initial state by means of some appropriate unitary operations. The outstanding advantage of the present schemes is that the success probability in all the considered remote state preparation (RSP) can reach 1.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Benatti, F.; Fannes, M.; Floreanini, R., Quantum information, computation and cryptography, J. Phys. A Math. Theor., 808, 28, 165-179 (2010) · Zbl 1197.81032
[2] Bennett, Ch; Brassard, G.; Jozsa, R.; Peres, A.; Wootters, Wk; Crpeau, C., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899 (2002) · Zbl 1051.81505
[3] Nielsen, Ma; Chuang, Il, Quantum Computation and Quantum Information (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 1049.81015
[4] Lo, Hk, Classical-communication cost in distributed quantum-information processing. a generalization of quantum-communication complexity, Phys. Rev. A, 62, 012313 (2000)
[5] Braunstein, Sl; Pati, Ak, Quantum Information with Continuous Variables (2003), Berlin: Springer, Berlin · Zbl 1013.00018
[6] Bouwmeester, D.; Ekert, A.; Zeilinger, A., The Physics of Quantum Information (2000), Berlin: Springer, Berlin · Zbl 1008.81504
[7] Li, Cb; Jiang, Zh; Zhang, Yq; Zhang, Zy; Wen, F.; Chen, Hx; Zhang, Yp; Xiao, M., Phys. Rev. Appl., 7, 014023 (2017)
[8] Tang, Ry; Preetpaul, Sd; Vladimir, Sg, In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber, Opt. Express., 16, 12, 9046-9053 (2008)
[9] Agarwal, Gs, Generation of pair coherent states and squeezing via the competition of Four-Wave mixing and amplified spontaneous emission, Phys. Rev. Lett., 57, 827 (1986)
[10] Zhang, D.; Li, Cb; Zhang, Zy; Zhang, Yq; Zhang, Yp; Xiao, M., Phys. Rev. A, 96, 043847 (2017)
[11] Chen, Hx; Zhang, X.; Zhu, Dy; Yang, C.; Jiang, T.; Zheng, Hb; Zhang, Yp, Phys. Rev. A, 90, 043846 (2014)
[12] Li, X.; Zhang, D.; Zhang, D., Dressing control of biphoton waveform transitions[J], Phys. Rev. A, 97, 053830 (2018)
[13] Li, Yh; Li, Xl; Sang, Mh; Nie, Yy; Wang, Zs, Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state, Quantum Inf. Process., 12, 3835-3844 (2013) · Zbl 1303.81061
[14] Li, Y.; Qiao, Y.; Sang, M.; Nie, Y., Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state, Int. J. Theor. Phys., 58, 1541-1545 (2019) · Zbl 1422.81055
[15] Zomorodi-Moghadam, M.; Houshmand, M.; Houshmand, M., Optimizing teleportation cost in distributed quantum circuits, Int. J. Theor. Phys., 57, 848-861 (2018) · Zbl 1394.81091
[16] Choudhury, Bs; Samanta, S., Asymmetric bidirectional 3-2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state, Int. J. Theor. Phys., 56, 3285-3296 (2017) · Zbl 1387.81103
[17] Yang, K.; Huang, L.; Yang, Lw, Quantum teleportation via GHZ-like state, Int. J. Theor. Phys., 48, 516-521 (2008) · Zbl 1162.81358
[18] Li, D.; Cao, Z., Teleportation of two-particle entangled state via cluster state, Commun. Theor. Phys., 47, 464-466 (2007)
[19] Hillery, M.; Buzek, V.; Berthiaume, A., Quantum secret sharing, Phys. Rev. A, 59, 3, 1829 (1990) · Zbl 1368.81066
[20] Lance, Am; Symul, T.; Bowen, Wp; Sanders, Bc; Ping, Kl, Tripartite quantum state sharing, Phys. Rev. Lett., 92, 17, 177903 (2004)
[21] Karlsson, A.; Koashi, M.; Imoto, N., Quantum entanglement for secret sharing and secret splitting, Phys. Rev. A, 59, 1, 162-168 (1999)
[22] Guo, Gp; Guo, Gc, Quantum secret sharing without entanglement, Phys. Lett. A, 310, 4, 247-251 (2003) · Zbl 1042.81521
[23] Yang, Yg; Wen, Qy; Zhu, Fc, An effificient two-step quantum key distribution protocol with orthogonal product states, Chin. Phys. B, 16, 910-914 (2007)
[24] Lo, Hk; Curty, M.; Qi, B., Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108, 130503 (2012)
[25] Deng, Fg; Long, Gl, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 68, 042315 (2003)
[26] Pati, Ak, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A, 63, 014302 (2001)
[27] Leung, Dw; Shor, Pw, Oblivious remote state preparation, Phys. Rev. Lett., 90, 127905 (2003)
[28] Zhan, Yb, Remote state preparation of a Greenberger-Horne-Zeilinger class state, Commun. Theor. Phys., 43, 637 (2005)
[29] Liu, Jm; Feng, Xl; Oh, Ch, Remote preparation of arbitrary two- and three-qubit states, Europhys. Lett., 87, 30006 (2009)
[30] Xiang, Gy; Li, J.; Yu, B.; Guo, Gc, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A, 72, 012315 (2005)
[31] Shi, J.; Zhan, Yb, Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state, Commun. Thoer. Phys., 51, 239 (2009) · Zbl 1171.81347
[32] Wang, D.; Ye, L., Optimizing scheme for remote preparation of four-particle cluster-like entangled states, Int. J. Theor. Phys., 50, 2748 (2011) · Zbl 1252.81031
[33] Ma, S-Y; Chen, W-L; Qu, Z-G; Tang, P., Controlled remote preparation of an arbitrary four-qubit -state via partially entangled channel, Int. J. Theor. Phys., 56, 1653-1664 (2017) · Zbl 1366.81066
[34] Choudhury, Bs; Samanta, S., An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf, Process., 18, 118 (2019) · Zbl 1417.81055
[35] Ma, P-C; Chen, G-B; Li, X-W; Zhan, Y-B, Efficient scheme for remote preparation of an arbitrary tripartite four-particle entangled state, Int. J. Mod. Phys. B, 31, 1850023 (2017) · Zbl 1429.81012
[36] Abeysinghe, A.; Hayden, P., Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication, Phys. Rev. A, 68, 062319 (2003)
[37] Zhao, S-Y; Fu, H.; Li, X-W; Chen, G-B; Ma, P-C; Zhan, Y-B, Efficient and economic schemes for remotely preparing a four-qubit cluster-type entangled state, Int. J. Theor. Phys., 53, 2485-2491 (2014) · Zbl 1298.81044
[38] Hua, C.; Chen, Yx, A scheme for remote state preparation of a general pure qubit with optimized classical communication cost, Quantum Inf. Process., 14, 1069-1076 (2015) · Zbl 1311.81056
[39] Xiao, Xq; Xiao, J.; Ren, Y.; Li, Y.; Ji, C.; Huang, Xg, Remote state preparation of a twoatom entangled state in cavity QED, Int. J. Theor. Phys., 55, 2764-2772 (2016) · Zbl 1342.81057
[40] Wang, D.; Hoehn, Rd; Ye, L.; Kais, S., Efcient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels, Int. J. Theor. Phys., 55, 3454-3466 (2016) · Zbl 1358.81063
[41] Shi, J.; Zhan, Yb, Probabilistic remote preparation of a tripartite high-dimensional equatorial entangled state, Commun. Thoer. Phys., 51, 239 (2009) · Zbl 1171.81347
[42] Peters, Na; Barreiro, Jt; Goggin, Me; Wei, Tc; Kwiat, Pg, Remote state preparation: arbitrary remote control of photon polarization, Phys. Rev. Lett., 94, 150502 (2005)
[43] Lv, Sx; Zhao, Zw; Zhou, P., Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional greenbergerCHorneCZeilinger states, Int. J. Theor. Phys., 57, 148-158 (2018) · Zbl 1387.81123
[44] Wu, Nn; Jiang, M., A highly efcient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource, Quantum Inf. Process., 17, 1-17 (2018) · Zbl 1402.81075
[45] Briegel, Hj; Raussendorf, R., Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett., 86, 910 (2001)
[46] Wei, Zh; Zha, Xw; Y, Y., Efficient schemes of remote state preparation for four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states, Int. J. Phys., 56, 1318-1352 (2017) · Zbl 1382.81028
[47] Ma, Pc; Zhan, Yb, Scheme for remotely preparing a four-particle entangled cluster-type state, Opt. Commun., 283, 12, 2640-2643 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.