×

Galois groups for integrable and projectively integrable linear difference equations. (English) Zbl 1364.39002

Summary: We consider first-order linear difference systems over \(\mathbb{C}(x)\), with respect to a difference operator \(\sigma\) that is either a shift \(\sigma : x \mapsto x + 1\), \(q\)-dilation \(\sigma : x \mapsto qx\) with \(q \in \mathbb{C}^\times\) not a root of unity, or Mahler operator \(\sigma : x \mapsto x^q\) with \(q \in \mathbb{Z}_{\geq 2}\). Such a system is integrable if its solutions also satisfy a linear differential system; it is projectively integrable if it becomes integrable “after moding out by scalars”. We apply recent results of Schäfke and Singer to characterize which groups can occur as Galois groups of integrable or projectively integrable linear difference systems. In particular, such groups must be solvable. Finally, we give hypertranscendence criteria.

MSC:

39A06 Linear difference equations
12H05 Differential algebra
12H10 Difference algebra
20H20 Other matrix groups over fields

References:

[1] Arreche, C. E., Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation, Commun. Contemp. Math. (2016), in press
[2] Becker, P-G., \(k\)-regular power series and Mahler-type functional equations, J. Number Theory, 49, 3, 269-286 (1994) · Zbl 0821.11013
[3] Bézivin, J-P., Sur une classe d’équations fonctionnelles non linéaires, Funkcial. Ekvac., 37, 2, 263-271 (1994) · Zbl 0810.39006
[4] Cassidy, P. J., Differential algebraic groups, Amer. J. Math., 94, 891-954 (1972) · Zbl 0258.14013
[5] Cassidy, P. J., The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras, J. Algebra, 121, 1, 169-238 (1989) · Zbl 0678.14011
[6] Cassidy, P. J.; Singer, M. F., Galois theory of parameterized differential equations and linear differential algebraic groups, (Differential Equations and Quantum Groups. Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Phys., vol. 9 (2007), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 113-155 · Zbl 1230.12003
[7] Chatzidakis, Z.; Hardouin, C.; Singer, M. F., On the definitions of difference Galois groups, (Model Theory with Applications to Algebra and Analysis, vol. 1. Model Theory with Applications to Algebra and Analysis, vol. 1, London Math. Soc. Lecture Note Ser., vol. 349 (2008), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 73-109 · Zbl 1234.12005
[8] Di Vizio, L.; Hardouin, C., Descent for differential Galois theory of difference equations: confluence and \(q\)-dependence, Pacific J. Math., 256, 1, 79-104 (2012) · Zbl 1258.12004
[9] Dreyfus, T.; Hardouin, C.; Roques, J., Hypertranscendence of solutions of Mahler equations, J. Eur. Math. Soc. (2015), in press
[10] Dreyfus, T.; Hardouin, C.; Roques, J., Functional relations of solutions of \(q\)-difference equations (2016)
[11] Feng, R.; Singer, M. F.; Wu, M., Liouvillian solutions of linear difference-differential equations, J. Symbolic Comput., 45, 3, 287-305 (2010) · Zbl 1233.12004
[12] Gorchinskiy, S.; Ovchinnikov, A., Isomonodromic differential equations and differential categories, J. Math. Pures Appl. (9), 102, 1, 48-78 (2014) · Zbl 1332.12011
[13] Hardouin, C.; Minchenko, A.; Ovchinnikov, A., Calculating Galois groups of differential equations with parameters, with applications to hypertranscendence, Math. Ann. (2016)
[14] Hardouin, C.; Singer, M. F., Differential Galois theory of linear difference equations, Math. Ann.. Math. Ann., Math. Ann., 350, 1, 243-244 (2011), Erratum · Zbl 1228.12005
[15] Hendriks, P. A., An algorithm for computing the standard form for second order linear \(q\)-difference equations, J. Pure Appl. Algebra, 117-118, 331-352 (1997) · Zbl 0877.12004
[16] Humphreys, J. E., Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 21 (1975), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0507.20017
[17] Ovchinnikov, A.; Wibmer, M., \(σ\)-Galois theory of linear difference equations, Int. Math. Res. Not. IMRN, 12, 3962-4018 (2015) · Zbl 1388.12011
[18] Ovchinnikov, A., Tannakian approach to linear differential algebraic groups, Transform. Groups, 13, 2, 413-446 (2008) · Zbl 1231.20045
[19] van der Put, M.; Singer, M. F., Galois Theory of Difference Equations, Lecture Notes in Mathematics, vol. 1666 (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0930.12006
[20] van der Put, M.; Singer, M. F., Galois Theory of Linear Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 328 (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1036.12008
[21] Ramis, J.-P., About the growth of entire functions solutions of linear algebraic \(q\)-difference equations, Ann. Fac. Sci. Toulouse Math. (6), 1, 1, 53-94 (1992) · Zbl 0796.39005
[22] Ree, R., Commutators in semi-simple algebraic groups, Proc. Amer. Math. Soc., 15, 1, 457-460 (1964) · Zbl 0127.25605
[23] Schäfke, R.; Singer, M. F., Consistent systems of linear differential and difference equations (2016)
[24] Wibmer, M., Geometric Difference Galois Theory (2010), PhD thesis, Heidelberg · Zbl 1287.12003
[25] Wibmer, M., Existence of ∂-parameterized Picard-Vessiot extensions over fields with algebraically closed constants, J. Algebra, 361, 163-171 (2012) · Zbl 1280.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.