×

Adaptive dynamic surface control for a class of nonlinear pure-feedback systems with parameter drift. (English) Zbl 07349120

Summary: In order to solve the problem of unknown parameter drift in the nonlinear pure-feedback system, a novel nonlinear pure-feedback system is proposed in which an unconventional coordinate transformation is introduced and a novel unconventional dynamic surface algorithm is designed to eliminate the problem of “calculation expansion” caused by the use of backstepping in the pure-feedback system. Meanwhile, a sufficiently smooth projection algorithm is introduced to suppress the parameter drift in the nonlinear pure-feedback system. Simulation experiments demonstrate that the designed controller ensures the global and ultimate boundedness of all signals in the closed-loop system and the appropriate designed parameters can make the tracking error arbitrarily small.

MSC:

93C40 Adaptive control/observation systems
93B52 Feedback control
Full Text: DOI

References:

[1] Isidori, V., Nonlinear Control Systems (1985), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 0569.93034
[2] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V., Nonlinear and Adaptive Control Design (1995), New York, NY, USA: John Wiley & Sons, New York, NY, USA
[3] Astolfi, A.; Karagiannis, D.; Ortega, R., Nonlinear and Adaptive Control with Applications (2008), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 1119.93059
[4] Ma, L.; Huo, X.; Zhao, X.; Zong, G., Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with multiple constraints: a small-gain approach, International Journal of Fuzzy Systems, 21, 8, 2609-2624 (2019) · doi:10.1007/s40815-019-00708-9
[5] Zhou, H. Q.; Zhai, J. Y., Adaptive output feedback control for a class of nonlinear time-varying delay systems, Applied Mathematics and Computation, 365 (2020) · Zbl 1433.93062 · doi:10.1016/j.amc.2019.124692
[6] Shen, Q.; Shi, P.; Zhang, T.; Lim, C.-C., Novel neural control for a class of uncertain pure-feedback systems, IEEE Transactions on Neural Networks and Learning Systems, 25, 4, 718-727 (2014) · doi:10.1109/tnnls.2013.2280728
[7] Wang, M.; Ge, S. S.; Hong, K.-S., Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays, IEEE Transactions on Neural Networks, 21, 11, 1804-1816 (2010) · doi:10.1109/tnn.2010.2073719
[8] Zhou, Y.; Dong, W.; Dong, S.; Chen, Y.; Zuo, R.; Liu, Z., Robust adaptive control of MIMO pure-feedback nonlinear systems via improved dynamic surface control technique, IEEE Access, 7, 96672-96685 (2019) · doi:10.1109/access.2019.2929119
[9] Chang, Y.; Wang, Y.; Alsaadi, F. E.; Zong, G., Adaptive fuzzy output‐feedback tracking control for switched stochastic pure‐feedback nonlinear systems, International Journal of Adaptive Control and Signal Processing, 33, 10, 1567-1582 (2019) · Zbl 1429.93175 · doi:10.1002/acs.3052
[10] Li, Y.; Zhang, J.; Wu, X., Adaptive control of uncertain non-affine pure feedback nonlinear systems using backstepping techniques, Proceedings of the 2014 33rd Chinese Control Conference, IEEE · doi:10.1109/ChiCC.2014.6896907
[11] Tong, S.; Li, Y., Adaptive fuzzy output feedback backstepping control of pure-feedback nonlinear systems via dynamic surface control technique, International Journal of Adaptive Control and Signal Processing, 27, 7, 541-561 (2013) · Zbl 1279.93070 · doi:10.1002/acs.2325
[12] Liu, Y., Backstepping control for a class of pure-feedback nonlinear systems, Control Theory & Applications, 31, 6, 801-804 (2014)
[13] Zeng, Z.; Wu, L.; Yang, Z., Self-learning sliding-mode disturbance rejection control for non-affine systems, Control Theory & Applications, 33, 7, 980-987 (2016) · Zbl 1374.93079
[14] Liu, Y., Dynamic surface control for pure-feedback nonlinear systems, Control Theory & Applications, 31, 9, 1262-1267 (2014)
[15] Wang, Y. C.; Li, H. F.; Qiu, X. J.; Xie, X. P., Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control, Applied Mathematics and Computation, 365 (2020) · Zbl 1433.93085 · doi:10.1016/j.amc.2019.124701
[16] Xiao, B.; Yang, X.; Karimi, H. R.; Qiu, J., Asymptotic tracking control for a more representative class of uncertain nonlinear systems with mismatched uncertainties, IEEE Transactions on Industrial Electronics, 66, 12, 9417-9427 (2019) · doi:10.1109/tie.2019.2893852
[17] Ioannou, P.; Sun, J., Robust Adaptive Control (1996), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0839.93002
[18] Pomet, J.-B.; Praly, L., Adaptive nonlinear regulation: estimation from the Lyapunov equation, IEEE Transactions on Automatic Control, 37, 6, 729-740 (1992) · Zbl 0755.93071 · doi:10.1109/9.256328
[19] Cai, Z.; deQueiroz, M. S.; Dawson, D. M., A sufficiently smooth projection operator, IEEE Transactions on Automatic Control, 51, 1, 135-139 (2006) · Zbl 1366.93283 · doi:10.1109/tac.2005.861704
[20] Swaroop, D.; Gerdes, J. C.; Yip, P. P., Dynamic surface control of nonlinear systems, Proceedings of the 1997 American Control Conference, IEEE · doi:10.1109/ACC.1997.612013
[21] Jia, F. J.; Wang, X. H.; Zhou, X. Y., Robust adaptive prescribed performance control for a class of nonlinear pure-feedback systems, International Journal of Robust and Nonlinear Control, 29, 12, 3971-3987 (2019) · Zbl 1426.93126 · doi:10.1002/rnc.4592
[22] Nussbaum, R. D., Some remarks on a conjecture in parameter adaptive control, Systems & Control Letters, 3, 5, 243-246 (1983) · Zbl 0524.93037 · doi:10.1016/0167-6911(83)90021-x
[23] Ge, S. S.; Wang, J., Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems, IEEE Transactions on Neural Networks, 13, 6, 1409-1419 (2002) · doi:10.1109/tnn.2002.804306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.