×

Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. (English) Zbl 1432.93381

Summary: In this paper, we consider the mixed optimal control of a linear stochastic system with a quadratic cost functional, with two controllers – one can choose only deterministic time functions, called the deterministic controller, while the other can choose adapted random processes, called the random controller. The optimal control is shown to exist under suitable assumptions. The optimal control is characterized via a system of fully coupled forward-backward stochastic differential equations (FBSDEs) of mean-field type. We solve the FBSDEs via solutions of two (but decoupled) Riccati equations, and give the respective optimal feedback law for both deterministic and random controllers, using solutions of both Riccati equations. The optimal state satisfies a linear stochastic differential equation (SDE) of mean-field type. Both the singular and infinite time-horizonal cases are also addressed.

MSC:

93E20 Optimal stochastic control
93C05 Linear systems in control theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
49N10 Linear-quadratic optimal control problems

References:

[1] Bensoussan, A.; Mitter, S. K.; Moro, A., Lectures on stochastic control, Nonlinear filtering and stochastic control, Proceedings of the 3rd 1981 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.), Held at Cortona, July 1-10, 1981 pp. 1-62. Lecture Notes in Mathematics 972 (1982), Berlin: Springer-Verlag, Berlin · Zbl 0505.93079
[2] Bismut, J. M., Linear quadratic optimal stochastic control with random coefficients, SIAM J. Control Optim., 14, 419-444 (1976) · Zbl 0331.93086 · doi:10.1137/0314028
[3] Bismut, J. M., On optimal control of linear stochastic equations with a linear-quadratic criterion, SIAM J. Control Optim., 15, 1-4 (1977) · Zbl 0353.93052 · doi:10.1137/0315001
[4] Buckdahn, R.; Li, J.; Peng, S., Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Process. Appl., 119, 3133-3154 (2009) · Zbl 1183.60022 · doi:10.1016/j.spa.2009.05.002
[5] Haussmann, U. G., Optimal stationary control with state and control dependent noise, SIAM J. Control, 9, 184-198 (1971) · Zbl 0223.93044 · doi:10.1137/0309016
[6] Kohlmann, M.; Tang, S., Minimization of risk and linear quadratic optimal control theory, SIAM J. Control Optim., 42, 1118-1142 (2003) · Zbl 1047.93048 · doi:10.1137/S0363012900372465
[7] Peng, S., Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim., 30, 284-304 (1992) · Zbl 0747.93081 · doi:10.1137/0330018
[8] Tang, S., General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations, SIAM J. Control Optim., 42, 53-75 (2003) · Zbl 1035.93065 · doi:10.1137/S0363012901387550
[9] Wonham, W. M., On a matrix Riccati equation of stochastic control, SIAM J. Control, 6, 681-697 (1968) · Zbl 0182.20803 · doi:10.1137/0306044
[10] Wu, H.; Zhou, X., Stochastic frequency characteristics, SIAM J. Control Optim., 40, 557-576 (2001) · Zbl 0997.93100 · doi:10.1137/S0363012900373756
[11] Yong, J.; Zhou, X. Y., Stochastic Controls: Hamiltonian Systems and HJB Equations (1999), New York: Springer-Verlag, New York · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.