×

Improved stability criteria for generalized neural networks with time-varying delay by auxiliary function-based integral inequality. (English) Zbl 1419.35004

Summary: This paper is mainly concerned with improved stability criteria for generalized neural networks (GNNs) with time-varying delay by delay-partitioning approach. A newly augmented Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed by decomposing integral interval, in which the relationships between the augmented state vectors are fully taken into account. The tighter bounding inequalities such as a Wirtinger-based integral inequality, Peng-Park’s integral inequality, and an auxiliary function-based integral inequality are employed to effectively handle the cross-product terms occurred in derivative of the LKF. As a result, less conservative delay-dependent stability criterion can be achieved in terms of \(e_{s}\) and LMIs. Finally, two numerical examples are included to show that the proposed results are less conservative than existing ones.

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D10 Inequalities involving derivatives and differential and integral operators
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Zhang, XM, Han, QL: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Netw. 22(8), 1180-1192 (2011) · doi:10.1109/TNN.2011.2147331
[2] Zhang, CK, He, Y, Jiang, L, Wu, QH, Wu, M: Delay-dependent stability criteria for generalized neural networks with two delay components. IEEE Trans. Neural Netw. Learn. Syst. 25, 1263-1276 (2014) · doi:10.1109/TNNLS.2013.2284968
[3] Park, MJ, Kwon, OM, Cha, EJ: On stability analysis for generalized neural networks with time-varying delays. Math. Probl. Eng. 2015(7), 1-11 (2015) · Zbl 1394.34153
[4] Zeng, HB, He, Y, Wu, M, Xiao, SP: Stability analysis of generalized neural networks with time-varying delays via a new integral inequality. Neurocomputing 161, 148-154 (2015) · doi:10.1016/j.neucom.2015.02.055
[5] Liu, YJ, Lee, SM, Kwon, OM, Park, JH: New approach to stability criteria for generalized neural networks with interval time-varying delays. Neurocomputing 149, 1544-1551 (2015) · doi:10.1016/j.neucom.2014.08.038
[6] Rakkiyappan, R, Sivasamy, R, Park, JH, Lee, TH: An improved stability criterion for generalized neural networks with additive time-varying delays. Neurocomputing 171, 615-624 (2016) · doi:10.1016/j.neucom.2015.07.004
[7] Hale, J: Theory of Functional Differential Equation. Springer, New York (1977) · Zbl 0352.34001 · doi:10.1007/978-1-4612-9892-2
[8] Lu, R, Wu, H, Bai, J: New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. J. Franklin Inst. 351(3), 1386-1399 (2014) · Zbl 1395.93467 · doi:10.1016/j.jfranklin.2013.11.001
[9] Zhang, D, Cai, WJ, Xie, LH, Wang, QG: Non-fragile distributed filtering for T-S fuzzy systems in sensor networks. IEEE Trans. Fuzzy Syst. 23(5), 1883-1890 (2015) · doi:10.1109/TFUZZ.2014.2367101
[10] He, Y, Wu, M, She, JH: An improved global asymptotic stability criterion for delayed cellular neural networks. IEEE Trans. Neural Netw. 17(1), 250-252 (2006) · doi:10.1109/TNN.2005.860874
[11] Lam, J, Xu, S, Ho, DWC, Zou, Q: On global asymptotic stability for a class of delayed neural networks. Int. J. Circuit Theory Appl. 40(11), 1165-1174 (2012) · doi:10.1002/cta.777
[12] Zeng, Z, Huang, T, Zheng, W: Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21(8), 1371-1377 (2010) · doi:10.1109/TNN.2010.2054106
[13] He, Y, Liu, GP, Rees, D, Wu, M: Stability analysis for neural networks with time-varying interval delay. IEEE Trans. Neural Netw. 18, 1850-1854 (2007) · doi:10.1109/TNN.2006.888373
[14] Li, T, Guo, L, Sun, C, Lin, C: Further results on delay-dependent stability criteria of neural networks with time-varying delays. IEEE Trans. Neural Netw. 19, 726-730 (2008) · doi:10.1109/TNN.2008.2003980
[15] Shao, HY: Delay-dependent stability for recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. 19, 1647-1651 (2008) · doi:10.1109/TNN.2008.2001265
[16] Zhu, X, Wang, Y: Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373, 4066-4072 (2009) · Zbl 1234.92004 · doi:10.1016/j.physleta.2009.09.006
[17] Xiao, SP, Zhang, XM: New globally asymptotic stability criteria for delayed cellular neural networks. IEEE Trans. Circuits Syst. II 56, 659-663 (2009) · doi:10.1109/TCSII.2009.2024244
[18] Zhang, XM, Han, QL: New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks. IEEE Trans. Neural Netw. 20, 533-539 (2009) · doi:10.1109/TNN.2009.2014160
[19] Zuo, Z, Yang, C, Wang, Y: A new method for stability analysis of recurrent neural networks with interval time-varying delay. IEEE Trans. Neural Netw. 21, 339-344 (2010) · doi:10.1109/TNN.2009.2037893
[20] Zhang, H, Liu, Z, Huang, GB, Wang, Z: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 21, 91-106 (2010) · doi:10.1109/TNN.2009.2034742
[21] Li, T, Zheng, WX, Lin, C: Delay-slope-dependent stability results of recurrent neural networks. IEEE Trans. Neural Netw. 22(12), 2138-2143 (2011) · doi:10.1109/TNN.2011.2169425
[22] Zeng, HB, He, Y, Wu, M, Zhang, CF: Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays. IEEE Trans. Neural Netw. 22, 806-812 (2011) · doi:10.1109/TNN.2011.2111383
[23] Li, X, Gao, H, Yu, X: A unified approach to the stability of generalized static neural networks with linear fractional. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 1275-1286 (2011) · doi:10.1109/TSMCB.2010.2089978
[24] Zhang, H, Yang, F, Liu, X, Zhang, Q: Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24, 513-521 (2013) · doi:10.1109/TNNLS.2012.2236571
[25] Ge, C, Hua, C, Guan, X: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach. IEEE Trans. Neural Netw. Learn. Syst. 25, 1378-1383 (2014) · doi:10.1109/TNNLS.2013.2285564
[26] Tian, JK, Xiong, WJ, Xu, F: Improved delay-partitioning method to stability analysis for neural networks with discrete and distributed time-varying delays. Appl. Math. Comput. 233, 152-164 (2014) · Zbl 1334.92025
[27] Lakshmanan, S, Park, JH, Jung, HY, Kwon, OM, Rakkiyappan, R: A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays. Neurocomputing 111, 81-89 (2013) · doi:10.1016/j.neucom.2012.12.016
[28] Mathiyalagan, K, Park, JH, Sakthivel, R, Marshal Anthoni, S: Delay fractioning approach to robust exponential stability of fuzzy Cohen-Grossberg neural networks. Appl. Math. Comput. 230, 451-463 (2014) · Zbl 1410.93071
[29] Shi, KB, Zhong, SM, Zhu, H, Liu, XZ, Zeng, Y: New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 168(30), 896-907 (2015) · doi:10.1016/j.neucom.2015.05.035
[30] Zeng, HB, Park, JH, Zhanga, CF, Wang, W: Stability and dissipativity analysis of static neural networks with interval time-varying delay. J. Franklin Inst. 352(3), 1284-1295 (2015) · Zbl 1307.93446 · doi:10.1016/j.jfranklin.2014.12.023
[31] Liu, Y, Lee, SM, Lee, HG: Robust delay-dependent stability criteria for uncertain neural networks with two additive time-varying delay components. Neurocomputing 151, 770-775 (2015) · doi:10.1016/j.neucom.2014.10.023
[32] Cheng, J, Zhong, S, Zhong, Q, Zhu, H, Du, Y: Finite-time boundedness of state estimation for neural networks with time-varying delays. Neurocomputing 129, 257-264 (2014) · doi:10.1016/j.neucom.2013.09.034
[33] Zeng, HB, He, Y, Wu, M, She, J: New results on stability analysis for systems with discrete distributed delay. Automatica 60(10), 189-192 (2015) · Zbl 1331.93166 · doi:10.1016/j.automatica.2015.07.017
[34] Zeng, HB, He, Y, Shi, P, Wu, M, Xiao, SP: Dissipativity analysis of neural networks with time-varying delays. Neurocomputing 168, 741-746 (2015) · doi:10.1016/j.neucom.2015.05.050
[35] Zeng, HB, Park, JH, Xia, JW: Further results on dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 79(1), 83-91 (2015) · Zbl 1331.34155 · doi:10.1007/s11071-014-1646-0
[36] Gu, K: A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Int. J. Control 74(10), 967-976 (2001) · Zbl 1015.93053 · doi:10.1080/00207170110047190
[37] Ariba, Y, Gouaisbaut, F: An augmented model for robust stability analysis of time-varying delay systems. Int. J. Control 82(9), 1616-1626 (2009) · Zbl 1190.93076 · doi:10.1080/00207170802635476
[38] Li, T, Wang, T, Song, A, Fei, S: Combined convex technique on delay-dependent stability for delayed neural networks. IEEE Trans. Neural Netw. Learn. Syst. 24, 1459-1466 (2013) · doi:10.1109/TNNLS.2013.2256796
[39] Gouaisbaut, F.; Peaucelle, D., Delay-dependent stability analysis of linear time delay systems (2006)
[40] Li, T, Ye, XL: Improved stability criteria of neural networks with time-varying delays: an augmented LKF approach. Neurocomputing 73, 1038-1047 (2010) · doi:10.1016/j.neucom.2009.10.001
[41] Kwon, OM, Park, JH, Lee, SM, Cha, EJ: New augmented Lyapunov-Krasovskii functional approach to stability analysis of neural networks with time-varying delays. Nonlinear Dyn. 76(1), 221-236 (2014) · Zbl 1319.92007 · doi:10.1007/s11071-013-1122-2
[42] He, Y, Liu, GP, Rees, D, Wu, M: Stability analysis for neural networks with time-varying interval delay. IEEE Trans. Neural Netw. 18(6), 1850-1854 (2007) · doi:10.1109/TNN.2007.903147
[43] Park, P, Ko, JW: Stability and robust stability for systems with a time-varying delay. Automatica 43(10), 1855-1858 (2007) · Zbl 1120.93043 · doi:10.1016/j.automatica.2007.02.022
[44] Park, PG, Ko, JW, Jeong, CK: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235-238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[45] Peng, C, Fei, MR: An improved result on the stability of uncertain T-S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 212, 97-109 (2013) · Zbl 1285.93054 · doi:10.1016/j.fss.2012.06.009
[46] Seuret, A, Gouaisbaut, F: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860-2866 (2013) · Zbl 1364.93740 · doi:10.1016/j.automatica.2013.05.030
[47] Zeng, HB, He, Y, Wu, M, She, J: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control 60(10), 2768-2772 (2015) · Zbl 1360.34149 · doi:10.1109/TAC.2015.2404271
[48] Park, PG, Lee, W, Lee, SY: Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Franklin Inst. 352, 1378-1396 (2015) · Zbl 1395.93450 · doi:10.1016/j.jfranklin.2015.01.004
[49] Seuret, A, Gouaisbaut, F: Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst. Control Lett. 81, 1-7 (2015) · Zbl 1330.93211 · doi:10.1016/j.sysconle.2015.03.007
[50] Liu, Y, Wang, Z, Liu, X: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19, 667-675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[51] Gyurkovics, É: A note on Wirtinger-type integral inequalities for time-delay systems. Automatica 61, 44-46 (2015) · Zbl 1327.93169 · doi:10.1016/j.automatica.2015.07.033
[52] Balasubramaniam, P, Krishnasamy, R, Rakkiyappan, R: Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach. Appl. Math. Model. 36, 2253-2261 (2012) · Zbl 1243.34105 · doi:10.1016/j.apm.2011.08.024
[53] Oliveira, MC; Skelton, RE, Stability tests for constrained linear systems, 241-257 (2001), Berlin · Zbl 0997.93086 · doi:10.1007/BFb0110624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.