×

Optimal reinsurance with model uncertainty and Stackelberg game. (English) Zbl 1492.91292

Summary: In this paper, we obtain an optimal reinsurance contract explicitly in the form of excess-of-loss with a limit when the risk measure is range-value-at-risk. Then we study optimal reinsurance with model uncertainty, where the uncertainty set contains a greatest element in the sense of stochastic order. Furthermore, we study the Stackelberg game in reinsurance with model uncertainty. In order to illustrate how our findings can be applied in practice to determine the optimal reinsurance contract, we perform an empirical study using the Wisconsin Local Government Property Insurance Fund dataset. Tweedie distributions are fit to the building and contents loss amounts from the property fund, and used to determine the optimal loading factor, and reinsurance contract corresponding to the loading factor. From the analysis, we discover that some policies have more recoveries from the optimal reinsurance contract than the premium paid, while others have smaller recoveries than the premium.

MSC:

91G05 Actuarial mathematics
91A65 Hierarchical games (including Stackelberg games)
91A80 Applications of game theory
Full Text: DOI

References:

[1] Arrow,, K., Uncertainty and the welfare economics of medical care, American Economic Review, 55, 154-158 (1965)
[2] Artzner, P.; Delbaen, F.; Eber, J. M.; Heath, D., Coherent measures of risk, Mathematical Finance, 9, 203-228 (1999) · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[3] Asimit, A. V.; Bignozzi, V.; Cheung, K. C.; Hu, J.; Kim, E. -S., Robust and pareto optimality of insurance contracts, European Journal of Operational Research, 262, 720-732 (2017) · Zbl 1376.91097 · doi:10.1016/j.ejor.2017.04.029
[4] Asimit, A. V.; Hu, J.; Xie, Y., Optimal robust insurance with a finite uncertainty set, Insurance: Mathematics and Economics, 87, 67-81 (2019) · Zbl 1410.91254
[5] Borch, K., Reciprocal reinsurance treaties seen as a two-person co-operative game, Scandinavian Actuarial Journal, 1-2, 29-58 (1960) · Zbl 0098.12102 · doi:10.1080/03461238.1960.10410597
[6] Cai, J.; Tan, K. S.; Weng, C.; Zhang, Y., Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43, 1, 185-196 (2008) · Zbl 1140.91417
[7] Cai, J.; Wei, W., Optimal reinsurance with positively dependent risks, Insurance: Mathematics and Economics, 50, 1, 57-63 (2012) · Zbl 1239.91075
[8] Cheung, K. C.; Sung, K. C. J.; Yam, S. C. P.; Yung, S. P., Optimal reinsurance under general law-invariant risk measures, Scandinavian Actuarial Journal, 2014, 72-91 (2014) · Zbl 1401.91110 · doi:10.1080/03461238.2011.636880
[9] Cheung, K. C.; Yam, S. C. P.; Zhang, Y., Risk-adjusted Bowley reinsurance under distorted probabilities, Insurance: Mathematics and Economics, 86, 64-72 (2019) · Zbl 1411.91272
[10] Cont, R.; Deguest, R.; Scandolo, G., Robustness and sensitivity analysis of risk measurement procedures, Quantitative Finance, 10, 6, 593-606 (2010) · Zbl 1192.91191 · doi:10.1080/14697681003685597
[11] Cui, W.; Yang, J.; Wu, L., Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles, Insurance: Mathematics and Economics, 53, 1, 74-85 (2013) · Zbl 1284.91222
[12] Dunn, P. K.; Smyth, G. K., Series evaluation of Tweedie exponential dispersion model densities, Statistics and Computing, 15, 4, 267-280 (2005) · doi:10.1007/s11222-005-4070-y
[13] Dunn, P. K.; Smyth, G. K., Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Statistics and Computing, 18, 73-86 (2008) · doi:10.1007/s11222-007-9039-6
[14] Embrechts, P.; Liu, H.; Wang, R., Quantile-based risk sharing, Operations Research, 66, 4, 936-949 (2018) · Zbl 1455.91274 · doi:10.1287/opre.2017.1716
[15] Fissler, T. & Ziegel, J. F. (2019). Elicitability of range value at risk. https://arxiv.org/pdf/1902.04489.pdf. · Zbl 07454702
[16] Föllmer, H.; Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, 6, 4, 429-447 (2002) · Zbl 1041.91039 · doi:10.1007/s007800200072
[17] Frees, E. W.; Lee, G.; Yang, L., Multivariate frequency-severity regression models in insurance, Risks, 4, 1, 4 (2016) · doi:10.3390/risks4010004
[18] Frittelli, M.; Rosazza Gianin, E., Law invariant convex risk measures, Advances in Mathematical Economics, 7, 33-46 (2005) · Zbl 1149.91320 · doi:10.1007/4-431-27233-X_2
[19] Hu, X.; Yang, H.; Zhang, L., Optimal retention for a stop-loss reinsurance with incomplete information, Insurance: Mathematics and Economics, 65, 15-21 (2015) · Zbl 1348.91149
[20] Jagannathan, R., Minimax procedure for a class of linear programs under uncertainty, Operations Research, 25, 1, 173-177 (1977) · Zbl 0371.90105 · doi:10.1287/opre.25.1.173
[21] Kaluszka, M.; Okolewski, A., An extension of Arrow’s result on optimal reinsurance contract, Journal of Risk and Insurance, 75, 2, 275-288 (2008) · doi:10.1111/j.1539-6975.2008.00260.x
[22] Li, J., Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization, Operations Research, 66, 6, 1533-1541 (2018) · Zbl 1455.91238 · doi:10.1287/opre.2018.1736
[23] Lo, A., A Neyman-Pearson perspective on optimal reinsurance with constraints, ASTIN Bulletin, 47, 2, 467-499 (2017) · Zbl 1390.91199 · doi:10.1017/asb.2016.42
[24] Pflug, G. Ch.; Timonina-Farkas, A.; Hochrainer-Stigler, S., Incorporating model uncertainty into optimal insurance contract design, Insurance: Mathematics and Economics, 73, 68-74 (2017) · Zbl 1416.91216
[25] Pflug, G. Ch.; Wozabal, D., Ambiguity in portfolio selection, Quantitative Finance, 7, 4, 435-442 (2007) · Zbl 1190.91138 · doi:10.1080/14697680701455410
[26] Popescu, I., A semidefinite programming approach to optimal moment bounds for convex classes of distributions, Mathematics of Operations Research, 30, 632-657 (2005) · Zbl 1082.60011 · doi:10.1287/moor.1040.0137
[27] Shaked, M.; Shanthikumar, J. G., Stochastic orders (2007), New York: Springer-Verlag, New York · Zbl 1111.62016
[28] Shi, P., Insurance ratemaking using a copula-based multivariate Tweedie model, Scandinavian Actuarial Journal, 2016, 3, 198-215 (2016) · Zbl 1401.91194 · doi:10.1080/03461238.2014.921639
[29] Wang, S. S.; Young, V. R.; Panjer, H. H., Axiomatic characterization of insurance prices, Insurance: Mathematics and Economics, 21, 2, 173-183 (1997) · Zbl 0959.62099
[30] Yang, Y.; Qian, W.; Zou, H., Insurance premium prediction via gradient tree-boosted Tweedie compound Poisson models, Journal of Business and Economic Statistics, 36, 3, 456-470 (2018) · doi:10.1080/07350015.2016.1200981
[31] Zhuang, S.; Weng, C.; Tan, K. S.; Assa, H., Marginal indemnification function formulation for optimal reinsurance, Insurance: Mathematics and Economics, 67, 65-76 (2016) · Zbl 1348.91196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.