×

Controlling coexisting attractors of an impacting system via linear augmentation. (English) Zbl 1376.93050

Summary: This paper studies the control of coexisting attractors in an impacting system via a recently developed control law based on linear augmentation. Special attention is given to two control issues in the framework of multistable engineering systems, namely, the switching between coexisting attractors without altering the system’s main parameters and the avoidance of grazing-induced chaotic responses. The effectiveness of the proposed control scheme is confirmed numerically for the case of a periodically excited, soft impact oscillator. Our analysis shows how path-following techniques for non-smooth systems can be used in order to determine the optimal control parameters in terms of energy expenditure due to the control signal and transient behavior of the control error, which can be applied to a broad range of engineering problems.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
70Q05 Control of mechanical systems

Software:

COCO

References:

[1] Ho, J.-H.; Nguyen, V.-D.; Woo, K.-C., Nonlinear dynamics of a new electro-vibro-impact system, Nonlinear Dynam., 63, 35-49 (2011) · Zbl 1215.93112
[2] Pavlovskaia, E. E.; Hendry, D. C.; Wiercigroch, M., Modelling of high frequency vibro-impact drilling, Int. J. Mech. Sci., 91, 110-119 (2015)
[3] Liu, Y.; Pavlovskaia, E. E.; Wiercigroch, M., Experimental verification of the vibro-impact capsule model, Nonlinear Dyn., 83, 1, 1029-1041 (2016)
[4] Páez Chávez, J.; Liu, Y.; Pavlovskaia, E. E.; Wiercigroch, M., Path-following analysis of the dynamical response of a piecewise-linear capsule system, Commun. Nonlinear Sci. Numer. Simul., 37, 102-114 (2016) · Zbl 1473.37104
[5] de Souza, S. L.T.; Caldas, I. L.; Viana, R. L.; Balthazar, J. M., Control and chaos for vibro-impact and non-ideal oscillators, J. Theor. Appl. Mech., 46, 3, 641-664 (2008)
[6] Lahriri, S.; Santos, I. F.; Weber, H. I.; Hartmann, H. J., On the nonlinear dynamics of two types of backup bearings — theoretical and experimental aspects, J. Eng. Gas Turbines Power, 134, 11 (2012)
[7] Páez Chávez, J.; Vaziri Hamaneh, V.; Wiercigroch, M., Modelling and experimental verification of an asymmetric jeffcott rotor with radial clearance, J. Sound Vib., 334, 86-97 (2015)
[8] Liu, Y.; Wiercigroch, M.; Ing, J.; Pavlovskaia, E. E., Intermittent control of coexisting attractors, Phil. Trans. R. Soc. A, 371, 1993, 15 (2013) · Zbl 1327.93209
[9] Liu, Y.; Pavlovskaia, E. E.; Wiercigroch, M.; Peng, Z. K., Forward and backward motion control of a vibro-impact capsule system, Int. J. Non-Linear Mech., 70, 30-46 (2015)
[10] Liu, Y.; Páez Chávez, J., Controlling multistability in a vibro-impact capsule system, Nonlinear Dynam. (2017), in press
[11] Ajibose, O. K.; Wiercigroch, M.; Pavlovskaia, E. E.; Akisanya, A. R., Global and local dynamics of drifting oscillator for different contact force models, Int. J. Non-Linear Mech., 45, 9, 850-858 (2010)
[12] Navarro-López, E. M., An alternative characterization of bit-sticking phenomena in a multi-degree-of-freedom controlled drillstring, Nonlinear Anal. RWA, 10, 5, 3162-3174 (2009) · Zbl 1173.37070
[13] Leonov, G. A.; Kuznetsov, N. V.; Kiseleva, M. A.; Solovyeva, E. P.; Zaretskiy, A. M., Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dyn., 77, 1, 277-288 (2014)
[14] Kapitaniak, M.; Vaziri Hamaneh, V.; Páez Chávez, J.; Nandakumar, K.; Wiercigroch, M., Unveiling complexity of drill-string vibrations: Experiments and modelling, Int. J. Mech. Sci., 101-102, 324-337 (2015)
[15] Páez Chávez, J.; Wiercigroch, M., Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model, Commun. Nonlinear Sci. Numer. Simul., 18, 9, 2571-2580 (2013) · Zbl 1304.70012
[16] Blażejczyk-Okolewska, B.; Kapitaniak, T., Co-existing attractors of impact oscillator, Chaos Solitons Fractals, 9, 8, 1439-1443 (1998) · Zbl 0942.37040
[17] Makarenkov, O.; Lamb, J. S.W., Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241, 22, 1826-1844 (2012)
[18] Kryzhevich, S.; Wiercigroch, M., Topology of vibro-impact systems in the neighborhood of grazing, Physica D, 241, 22, 1919-1931 (2012)
[19] Jiang, H.; Wiercigroch, M., Geometrical insight into non-smooth bifurcations of a soft impact oscillator, IMA J. Appl. Math., 81, 4, 662-678 (2016) · Zbl 1426.70024
[20] Páez Chávez, J.; Pavlovskaia, E. E.; Wiercigroch, M., Bifurcation analysis of a piecewise-linear impact oscillator with drift, Nonlinear Dyn., 77, 1-2, 213-227 (2014)
[21] Ing, J.; Pavlovskaia, E. E.; Wiercigroch, M.; Banerjee, S., Experimental study of impact oscillator with one-sided elastic constraint, Phil. Trans. R. Soc. A, 366, 1866, 679-704 (2008) · Zbl 1153.74302
[22] Ing, J.; Pavlovskaia, E. E.; Wiercigroch, M.; Banerjee, S., Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing, Physica D, 239, 6, 312-321 (2010) · Zbl 1183.37091
[23] Kundu, S.; Banerjee, S.; Ing, J.; Pavlovskaia, E. E.; Wiercigroch, M., Singularities in soft-impacting systems, Physica D, 241, 5, 553-565 (2012) · Zbl 1387.74091
[24] Liao, M.; Ing, J.; Páez Chávez, J.; Wiercigroch, M., Bifurcation techniques for stiffness identification of an impact oscillator, Commun. Nonlinear Sci. Numer. Simul., 41, 19-31 (2016) · Zbl 1458.74066
[25] Pavlovskaia, E. E.; Ing, J.; Wiercigroch, M.; Banerjee, S., Complex dynamics of bilinear oscillator close to grazing, Internat. J. Bifur. Chaos, 20, 11, 3801-3817 (2010)
[26] de Souza, S. L.T.; Caldas, I. L., Controlling chaotic orbits in mechanical systems with impacts, Chaos Solitons Fractals, 19, 1, 171-178 (2004) · Zbl 1086.37045
[27] de Souza, S. L.T.; Caldas, I. L.; Viana, R. L., Damping control law for a chaotic impact oscillator, Chaos Solitons Fractals, 32, 2, 745-750 (2007)
[28] Dankowicz, H.; Jerrelind, J., Control of near-grazing dynamics in impact oscillators, Proc. R. Soc. A, 461, 2063, 3365-3380 (2005) · Zbl 1334.70046
[29] Karnatak, R., Linear augmentation for stabilizing stationary solutions: Potential pitfalls and their application, PLoS One, 10, 11, 22 (2015)
[30] Sharma, P. R.; Sharma, A.; Shrimali, M. D.; Prasad, P., Targeting fixed-point solutions in nonlinear oscillators through linear augmentation, Phys. Rev. E, 83, 4 (2011)
[31] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Feudel, U., Controlling bistability by linear augmentation, Phys. Lett. A, 377, 37, 2329-2332 (2013)
[32] Sharma, P. R.; Singh, A.; Prasad, P.; Shrimali, M. D., Controlling dynamical behavior of drive-response system through linear augmentation, Eur. Phys. J. Spec. Top., 223, 8, 1531-1539 (2014)
[33] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Kuznetsov, N. V.; Leonov, G. A., Controlling dynamics of hidden attractors, Internat. J. Bifur. Chaos, 25, 4, 7 (2015) · Zbl 1314.34134
[34] Dankowicz, H.; Schilder, F., (Recipes for Continuation. Recipes for Continuation, Computational Science and Engineering (2013), SIAM: SIAM Philadelphia) · Zbl 1277.65037
[35] Dankowicz, H.; Schilder, F., An extended continuation problem for bifurcation analysis in the presence of constraints, J. Comput. Nonlinear Dyn., 6, 3, 8 (2011)
[36] (Krauskopf, B.; Osinga, H.; Galán-Vioque, J., Numerical Continuation Methods for Dynamical Systems. Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems (2007), Springer-Verlag: Springer-Verlag Netherlands) · Zbl 1117.65005
[37] Dorf, R. C.; Bishop, R. H., Modern Control Systems (2011), Prentice Hall: Prentice Hall New Jersey
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.