×

A modified DIviding RECTangles algorithm for a problem in astrophysics. (English) Zbl 1226.90082

Summary: We present a modification of the DIRECT (DIviding RECTangles) algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem, since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema and unavailable derivatives. DIRECT performs a sampling of the feasible domain over a set of points that becomes dense in the limit, thus ensuring the everywhere dense convergence; however, it becomes ineffective on significant instances of the problem under consideration, because it tends to produce a uniform coverage of the feasible domain, by oversampling regions that are far from the optimal solution. DIRECT has been modified by embodying information provided by a suitable discretization of the feasible domain, based on the signal theory, which takes into account the variability of the objective function. Numerical experiments show that DIRECT-G largely outperforms DIRECT and the grid search, the latter being the reference algorithm in the astrophysics community. Furthermore, DIRECT-G is comparable with a genetic algorithm specifically developed for the problem. However, DIRECT-G inherits the convergence properties of DIRECT, whereas the genetic algorithm has no guarantee of convergence.

MSC:

90C26 Nonconvex programming, global optimization
90C90 Applications of mathematical programming

Software:

DIRECT
Full Text: DOI

References:

[1] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993) · Zbl 0796.49032 · doi:10.1007/BF00941892
[2] Jones, D.R.: DIRECT global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 725–735. Springer, Berlin (2009)
[3] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer Academic, Dordrecht (2000) · Zbl 0966.90073
[4] Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002) · Zbl 1017.90133 · doi:10.1023/A:1013729320435
[5] Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001) · Zbl 1079.90624 · doi:10.1023/A:1013123110266
[6] Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Glob. Optim. 21(4), 415–433 (2001) · Zbl 1014.90072 · doi:10.1023/A:1012782825166
[7] He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002) · Zbl 1036.90055 · doi:10.1023/A:1019992822938
[8] Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001) · Zbl 1039.90049 · doi:10.1023/A:1017930332101
[9] Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. Journal of Global Optimization (2010) · Zbl 1230.90153
[10] Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45(2), 253–375 (2010) · Zbl 1187.90275 · doi:10.1007/s10589-008-9217-2
[11] Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C., Shaffer, C.A., Tyson, J.J.: Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J. Glob. Optim. 40, 719–738 (2008) · Zbl 1140.68371 · doi:10.1007/s10898-007-9273-7
[12] Thorne, K.S.: Gravitational radiation. In: Hawking, S.W., Israel, W. (eds.) 300 Years of Gravitation, pp. 330–458. Cambridge University Press, Cambridge (1987) · Zbl 0966.83515
[13] Babak, S., Balasubramanian, R., Churches, D., Cokelaer, T., Sathyaprakash, B.S.: A template bank to search for gravitational waves from inspiralling compact binaries I: physical models. Class. Quantum Gravity 23, 5477–5504 (2006) · Zbl 1101.85305 · doi:10.1088/0264-9381/23/18/002
[14] di Serafino, D., Gomez, S., Milano, L., Riccio, F., Toraldo, G.: A genetic algorithm for a global optimization problem arising in the detection of gravitational waves. J. Glob. Optim. 48(1), 41–55 (2010) · Zbl 1202.90221 · doi:10.1007/s10898-010-9525-9
[15] di Serafino, D., Riccio, F.: On the application of multiple-deme parallel genetic algorithms in astrophysics. In: Proceedings of the 18th Euromicro International Conference on Parallel Distributed and Network-Based Processing, pp. 231–237 (2010)
[16] Milano, L., Barone, F., Milano, M.: Time domain amplitude and frequency detection of gravitational waves from coalescing binaries. Phys. Rev. D 55(8), 4537–4554 (1997) · doi:10.1103/PhysRevD.55.4537
[17] Mohanty, S.D.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: extension to post-Newtonian waveforms. Phys. Rev. D 57(2), 630–658 (1998) · doi:10.1103/PhysRevD.57.630
[18] Mohanty, S.D., Dhurandhar, S.V.: Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. Phys. Rev. D 54(12), 7108–7128 (1996) · doi:10.1103/PhysRevD.54.7108
[19] Owen, B.J.: Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys. Rev. D 53(12), 6749–6761 (1996) · doi:10.1103/PhysRevD.53.6749
[20] Blanchet, L., Rlyer, B., Wiseman, A.G.: Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order. Class. Quantum Gravity 13, 575–584 (1996) · Zbl 0875.53011 · doi:10.1088/0264-9381/13/4/002
[21] Prix, R.: Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class. Quantum Gravity 24, S481–S490 (2007) · Zbl 1206.83021 · doi:10.1088/0264-9381/24/19/S11
[22] Rasio, A.R., Shapiro, S.L.: Coalescing binary neutron stars. Class. Quantum Gravity 16(6), R1–R29 (1999) · doi:10.1088/0264-9381/16/6/201
[23] Allen, B., et al.: LAL Software Documentation. Revision 1.44, 2005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.