×

On the role of magnetars-like magnetic fields into the dynamics and gravitational wave emission of binary neutron stars. (English) Zbl 1518.85006

Summary: Modelling the magnetic interaction of a binary system of neutron stars as a dipole, we can include the magnetic effect in the Newtonian and in the inspiral dynamics of the system using an equivalent one-body description. Furthermore, in the inspiral stage, we determine the role of the magnetic interaction in the waveforms generated by the system and obtain explicit formulas for the decrease in the separation of the stars, time to reach a minimal radius, gravitational luminosity and change of gravitational wave frequency, all of which are within the quadrupole approximation. For the magnitude of the magnetic field that is considered the maximum possible in order to underline the effects in the dynamics of these binaries \(\sim 10^{16}\)G we are able to show that its effect on the observable quantities is of the order of the 2PN correction, already close to the detection range of the gravitational wave observatories. We also discuss cases where the extreme magnetic fields could have a more significant effect.

MSC:

85A15 Galactic and stellar structure
83C35 Gravitational waves
78A25 Electromagnetic theory (general)
70F05 Two-body problems
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] Abbott, BP, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116, 6 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Abbott, BP, LIGO: the laser interferometer gravitational-wave observatory, Rep. Prog. Phys., 72 (2009) · doi:10.1088/0034-4885/72/7/076901
[3] Aasi, J., Advanced LIGO, Class. Quantum Grav., 32 (2015) · doi:10.1088/0264-9381/32/7/074001
[4] Abbott, BP, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 16 (2017) · doi:10.1103/PhysRevLett.119.161101
[5] Abbott, BP, Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett., 848, 2, 12 (2017) · doi:10.3847/2041-8213/aa91c9
[6] Abbott, BP, GW190425: observation of a compact binary coalescence with total mass \(\sim 3.4 M_{\odot }\), Astrophys. J. Lett., 892, 1, 3 (2020) · doi:10.3847/2041-8213/ab75f5
[7] Sinha, M.; Mukhopadhyay, B.; Sedrakian, A., Hypernuclear matter in strong magnetic field, Nucl. Phys. A, 898, 43-58 (2013) · doi:10.1016/j.nuclphysa.2012.12.076
[8] Arzoumanian, Z.; Nice, DJ; Taylor, JH; Thorsett, SE, Timing behavior of 96 radio pulsars, APJ, 422, 671 (1994) · doi:10.1086/173760
[9] Viganò, D.: Magnetic fields in neutron stars. Other thesis, Universitat d’Alacant (2013)
[10] Kaspi, VM, The neutron star zoo, IAU Symp., 337, 3-8 (2017) · doi:10.1017/S1743921317010390
[11] Woods, P.M., Thompson, C.: Soft gamma repeaters and anomalous x-ray pulsars: magnetar candidates (2004) arXiv:astro-ph/0406133
[12] Duncan, RC; Thompson, C., Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts, Astrophys. J. Lett., 392, 9 (1992) · doi:10.1086/186413
[13] Kaspi, VM; Beloborodov, A., Magnetars, Ann. Rev. Astron. Astrophys., 55, 261-301 (2017) · doi:10.1146/annurev-astro-081915-023329
[14] Ioka, K.; Taniguchi, K., Gravitational waves from inspiralling compact binaries with magnetic dipole moments, Astrophys. J., 537, 327 (2000) · doi:10.1086/309004
[15] Makishima, K.; Murakami, H.; Enoto, T.; Nakazawa, K., A NuSTAR study of the 55 ks hard X-ray pulse-phase modulation in the magnetar 4U 0142+61, Publ. Astron. Soc. Jpn. (2019) · doi:10.1093/pasj/psy129
[16] Mösta, P.; Ott, CD; Radice, D.; Roberts, LF; Schnetter, E.; Haas, R., A large scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae, Nature, 528, 376 (2015) · doi:10.1038/nature15755
[17] Ott, CD, Massive computation for understanding core-collapse supernova explosions, Comput. Sci. Eng., 18, 5, 78-92 (2016) · doi:10.1109/MCSE.2016.81
[18] Franceschetti, K.; Del Zanna, L., General relativistic mean-field dynamo model for proto-neutron stars, Universe, 6, 6, 83 (2020) · doi:10.3390/universe6060083
[19] Reboul-Salze, A.; Guilet, J.; Raynaud, R.; Bugli, M., A global model of the magnetorotational instability in protoneutron stars, Astron. Astrophys., 645, 109 (2021) · doi:10.1051/0004-6361/202038369
[20] Reboul-Salze, A., Guilet, J., Raynaud, R., Bugli, M.: MRI-driven \(\alpha -\Omega\) dynamos in protoneutron stars (2021) doi:10.1051/0004-6361/202142368arXiv:2111.02148 [astro-ph.HE]
[21] Cutler, C.; Ushomirsky, G.; Link, B., The crustal rigidity of a neutron star, and implications for PSR 1828-11 and other precession candidates, Astrophys. J., 588, 975 (2003) · doi:10.1086/368308
[22] Ioka, K.; Sasaki, M., Relativistic stars with poloidal and toroidal magnetic fields and meridional flow, Astrophys. J., 600, 296-316 (2004) · doi:10.1086/379650
[23] Pili, AG; Bucciantini, N.; Del Zanna, L., Axisymmetric equilibrium models for magnetized neutron stars in general relativity under the conformally flat condition, Mon. Not. R. Astron. Soc., 439, 3541-3563 (2014) · doi:10.1093/mnras/stu215
[24] Pili, AG; Bucciantini, N.; Del Zanna, L., General relativistic neutron stars with twisted magnetosphere, Mon. Not. R. Astron. Soc., 447, 2821 (2015) · doi:10.1093/mnras/stu2628
[25] Price, D.; Rosswog, S., Producing ultra-strong magnetic fields in neutron star mergers, Science, 312, 719 (2006) · doi:10.1126/science.1125201
[26] Troja, E.; Rosswog, S.; Gehrels, N., Precursors of short gamma-ray bursts, Astrophys. J., 723, 1711-1717 (2010) · doi:10.1088/0004-637X/723/2/1711
[27] Lipunov, VM; Panchenko, IE, Pulsars revived by gravitational waves, Astron. Astrophys., 312, 937 (1996)
[28] Hansen, BMS; Lyutikov, M., Radio and x-ray signatures of merging neutron stars, Mon. Not. R. Astron. Soc., 322, 695 (2001) · doi:10.1046/j.1365-8711.2001.04103.x
[29] Medvedev, MV; Loeb, A., On poynting-flux-driven bubbles and shocks around merging neutron star binaries, Mon. Not. R. Astron. Soc., 431, 2737 (2013) · doi:10.1093/mnras/stt366
[30] Paschalidis, V.; Etienne, ZB; Shapiro, SL, General relativistic simulations of binary black hole-neutron stars: precursor electromagnetic signals, Phys. Rev. D, 88, 2 (2013) · doi:10.1103/PhysRevD.88.021504
[31] Giacomazzo, B.; Rezzolla, L.; Baiotti, L., General Relativistic Magnetohydrodynamic Simulations of Binary Neutron Star Mergers, 69-76 (2011), Paris: Moriond, Paris
[32] Antoniadis, J., A massive pulsar in a compact relativistic binary, Science, 340, 6131 (2013) · doi:10.1126/science.1233232
[33] Sarin, N.; Lasky, PD, The evolution of binary neutron star post-merger remnants: a review, Gen. Rel. Grav., 53, 6, 59 (2021) · Zbl 1483.85001 · doi:10.1007/s10714-021-02831-1
[34] Palenzuela, C.; Lehner, L.; Ponce, M.; Liebling, SL; Anderson, M.; Neilsen, D.; Motl, P., Electromagnetic and gravitational outputs from binary-neutron-star coalescence, Phys. Rev. Lett., 111, 6 (2013) · doi:10.1103/PhysRevLett.111.061105
[35] Palenzuela, C.; Lehner, L.; Liebling, SL; Ponce, M.; Anderson, M.; Neilsen, D.; Motl, P., Linking electromagnetic and gravitational radiation in coalescing binary neutron stars, Phys. Rev. D, 88, 4 (2013) · doi:10.1103/PhysRevD.88.043011
[36] Abbott, BP, Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA, Living Rev. Rel., 21, 1, 3 (2018) · doi:10.1007/s41114-020-00026-9
[37] The LIGO Scientific Collaboration, t.C. the Virgo Collaboration: The LSC-Virgo-KAGRA observational science working groups: white paper. Phys. Rev. D 78, 02412 (2020)
[38] Blanchet, L.; Damour, T.; Iyer, BR; Will, CM; Wiseman, AG, Gravitational-radiation damping of compact binary systems to second post-Newtonian order, Phys. Rev. Lett., 74, 3515-3518 (1995) · doi:10.1103/PhysRevLett.74.3515
[39] Blanchet, L., General relativistic dynamics of compact binary systems, C. R. Phys., 8, 57-68 (2007) · doi:10.1016/j.crhy.2006.11.004
[40] Gergely, L.A., Perjes, Z., Vasuth, M.: Spin effects in radiating compact binaries, pp. 259-262 (1998)
[41] Gergely, LA, Spin spin effects in radiating compact binaries, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.024035
[42] Gergely, LA; Keresztes, Z., Gravitational radiation reaction in compact binary systems: contribution of the quadrupole-monopole interaction, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.024020
[43] Vasuth, M.; Keresztes, Z.; Mihaly, A.; Gergely, LA, Gravitational radiation reaction in compact binary systems: contribution of the magnetic dipole-magnetic dipole interaction, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.124006
[44] Dietrich, T., Matter imprints in waveform models for neutron star binaries: tidal and self-spin effects, Phys. Rev. D, 99, 2 (2019) · doi:10.1103/PhysRevD.99.024029
[45] Bernuzzi, S.; Nagar, A.; Dietrich, T.; Damour, T., Modeling the dynamics of tidally interacting binary neutron stars up to the merger, Phys. Rev. Lett., 114, 16 (2015) · doi:10.1103/PhysRevLett.114.161103
[46] Maggiore, M., Gravitational Waves. Theory and Experiments. Oxford Master Series in Physics (2007), Oxford: Oxford University Press, Oxford · doi:10.1093/acprof:oso/9780198570745.001.0001
[47] Anderson, M.; Hirschmann, EW; Lehner, L.; Liebling, SL; Motl, PM; Neilsen, D.; Palenzuela, C.; Tohline, JE, Magnetized neutron star mergers and gravitational wave signals, Phys. Rev. Lett., 100 (2008) · doi:10.1103/PhysRevLett.100.191101
[48] Bourgoin, A.; Le Poncin-Lafitte, C.; Mathis, S.; Angonin, M-C, Impact of dipolar magnetic fields on gravitational wave strain by galactic binaries, Phys. Rev. D, 105, 12 (2022) · doi:10.1103/PhysRevD.105.124042
[49] Mukhopadhyay, B., Bhattacharya, M., Hackett, A.J., Kalita, S., Karinkuzhi, D., Tout, C.A.: Highly magnetized white dwarfs: implications and current status. In: 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (2021)
[50] Gruzinov, A., Pulsar emission and force-free electrodynamics, Astrophys. J. Lett., 667, 69 (2007) · doi:10.1086/519839
[51] Cerutti, B.; Beloborodov, A., Electrodynamics of pulsar magnetospheres, Space Sci. Rev., 207, 1-4, 111-136 (2017) · doi:10.1007/s11214-016-0315-7
[52] Lattimer, JM, The nuclear equation of state and neutron star masses, Ann. Rev. Nucl. Part. Sci, 62, 485-515 (2012) · doi:10.1146/annurev-nucl-102711-095018
[53] Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J., Shapiro delay measurement of a two solar mass neutron star, Nature, 467, 1081-1083 (2010) · doi:10.1038/nature09466
[54] Cheng, KS; Dai, ZG, On the bimodal magnetic field distribution of binary pulsars, APJL, 476, 1, 39-42 (1997) · doi:10.1086/310486
[55] Jackson, JD, Classical Electrodynamics (1998), London: Wiley, London · Zbl 0997.78500
[56] Liu, YT; Shapiro, SL; Etienne, ZB; Taniguchi, K., General relativistic simulations of magnetized binary neutron star mergers, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.024012
[57] Mikoczi, B.; Vasuth, M.; Gergely, LA, Self-interaction spin effects in inspiralling compact binaries, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.124043
[58] Lincoln, CW; Will, CM, Coalescing binary systems of compact objects to (post)5/2 Newtonian order: late time evolution and gravitational radiation emission, Phys. Rev. D, 42, 1123-1143 (1990) · doi:10.1103/PhysRevD.42.1123
[59] Blanchet, L.; Iyer, BR; Will, CM; Wiseman, AG, Gravitational wave forms from inspiralling compact binaries to second postNewtonian order, Class. Quantum Grav., 13, 575-584 (1996) · Zbl 0875.53011 · doi:10.1088/0264-9381/13/4/002
[60] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[61] Shapiro, SL; Teukolsky, SA, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (1983), London: Wiley, London · doi:10.1002/9783527617661
[62] Abbott, R., et al.: GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run (2021). arXiv:2111.03606 [gr-qc]
[63] Apostolatos, T.A.: Modulation of gravitational waveforms from merging binaries caused by spin-induced orbital precession. In: 7th Marcel Grossmann Meeting on General Relativity (MG 7), pp. 1075-1077 (1994)
[64] Capozziello, S.; Laurentis, MD; Martino, ID; Formisano, M.; Vernieri, D., Gravitational and electromagnetic emission by magnetized coalescing binary systems, Astrophys. Space Sci., 333, 29-35 (2011) · Zbl 1230.85019 · doi:10.1007/s10509-011-0633-x
[65] Hannam, M.; Schmidt, P.; Bohé, A.; Haegel, L.; Husa, S.; Ohme, F.; Pratten, G.; Pürrer, M., Simple model of complete precessing black-hole-binary gravitational waveforms, Phys. Rev. Lett., 113, 15 (2014) · doi:10.1103/PhysRevLett.113.151101
[66] Zhang, B.; Meszaros, P., Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar, Astrophys. J. Lett., 552, 35-38 (2001) · doi:10.1086/320255
[67] Goldreich, P.; Julian, WH, Pulsar electrodynamics, Astrophys. J., 157, 869 (1969) · doi:10.1086/150119
[68] Spitkovsky, A., Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators, Astrophys. J. Lett., 648, 51-54 (2006) · doi:10.1086/507518
[69] Olausen, SA; Kaspi, VM, The McGill magnetar catalog, Astrophys. J. Suppl., 212, 6 (2014) · doi:10.1088/0067-0049/212/1/6
[70] Brügmann, B., Gonzalez, J., Hannam, M., Husa, S., Sperhake, U., Christadler, I.: Toward conquering the parameter space of gravitational wave signals from black hole coalescence (2008). doi:10.1007/978-3-540-74739-0_2 · Zbl 1390.83047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.