×

Quasi-normal modes of stars and black holes. (English) Zbl 0984.83002

Summary: Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C57 Black holes
83B05 Observational and experimental questions in relativity and gravitational theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory

References:

[1] Abrahams, A.M., and Cook, G.B., “Collisions of boosted black holes: Perturbation theory prediction of gravitational radiation”, Phys. Rev. D, 50, R2364-R2367, (1994). For a related online version see: A.M. Abrahams, et al., “Collisions of boosted black holes: perturbation theory prediction of gravitational radiation”, (1994), [Online Los Alamos Archive Preprint]: cited on 23 May 1994, http://xxx.lanl.gov/abs/gr-qc/9405051. 5
[2] Abrahams, A.M., and Price, R.H., “Applying black hole perturbation theory to numerically generated space-times.”, Phys. Rev. D, 53, 1963-1971, (1996). For a related online version see: A.M. Abrahams, et al., “Applying black hole perturbation theory to numerically generated spacetimes”, (1995), [Online Los Alamos Archive Preprint]: cited on 28 August 1995, http://xxx.lanl.gov/abs/gr-qc/9508059. 5
[3] Abrahams, A.M., Shapiro, S.L., and Teukolsky, S.A., “Calculation ofgrav-itational waveforms from black hole collisions and disk collapse: Applying perturbation theory to numerical scpacetimes”, Phys. Rev. D, 51, 42954301, (1995). For a related online version see: A.M. Abrahams, et al., “Calculation of gravitational wave forms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes”, (1994), [Online Los Alamos Archive Preprint]: cited on 29 August 1994, http://xxx.lanl.gov/abs/gr-qc/9408036. 5
[4] Albererio, S., Ferreira, L.S., and Streit, L., eds., Lecture Notes in Physics 211 Proceedings Bielefeld, (Springer-Verlag, Berlin, 1984). 9
[5] Allen, G., Andersson, N., Kokkotas, K.D., and Schutz, B.F., “Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star”, Phys. Rev. D, 58, 124012, (1998). For a related online version see: G. Allen, et al., “Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star”, (1997), [Online Los Alamos Archive Preprint]: cited on 8 April 1997, http://xxx.lanl.gov/abs/gr-qc/9704023. 4.1, 4.1, 5.2, 5.4, 6.1.1, 4
[6] Allen, G.D., Andersson, N., Kokkotas, K.D., Laguna, P., Pullin, J., and Ruoff, J., “The close-limit approximation to neutron star collisions”, Phys. Rev. For a related online version see: G.D. Allen, et al., “The close-limit approximation to neutron star collisions”, (1999), [Online Los Alamos Archive Preprint]: cited on 29 March 1999, http://xxx.lanl.gov/abs/gr-qc/9903100. accepted for publication. 5, 5.2, 7.1
[7] Allen, G.D., Camarda, K., and Seidel, E., “Evolution of Distorted Black Holes: A Perturbative Approach”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 3 June 1998, http://xxx.lanl.gov/abs/gr-qc/9806014. 5, 7.1
[8] Andersson, N., “A numerically accurate investigation of black-hole normal modes”, Proc. R. Soc. London, 439, 47-58, (1992). 6.1.2 · Zbl 0773.53032
[9] Andersson, N., “Normal-mode frequencies of Reissner-Nordström black holes”, Proc. R. Soc. London, 442, 427-4 6, (1993). 1
[10] Andersson, N., “On the asymptotic distribution of quasinormal-mode frequencies for Schwarzschild black holes”, Class. Quantum Grav., 10, L61-L67, (1993). 1
[11] Andersson, N., “Total transmission through the Schwarzschild black hole potential barrier”, Class. Quantum Grav., 11, L39-L44, (1994). 1
[12] Andersson, N., “Excitation of Schwarzschild black hole quasinormal modes”, Phys. Rev. D, 51, 353-363, (1995). 5.1
[13] Andersson, N., “Two simple models for gravitational-wave modes of compact stars”, Gen. Relativ. Gravit., 28, 1433-1445, (1996). 4.2.2 · Zbl 0875.83047
[14] Andersson, N., “A New class of unstable modes of rotating relativistic stars”, Astrophys. J., 502, 708-713, (1998). For a related online version see: N. Andersson, “A new class of unstable modes of rotating relativistic stars”, (1997), [Online Los Alamos Archive Preprint]: cited on 24 June 1997, http://xxx.lanl.gov/abs/gr-qc/9706075. 4.1
[15] Andersson, N., Araujo, M.E., and Schutz, B.F., “The phase-integral method and the black hole normal modes”, Class. Quantum Grav., 10, 735-755, (1993). 6.1.3 · Zbl 0766.58060
[16] Andersson, N., Araujo, M.E., and Schutz, B.F., “Quasinormal modes of Reissner-Nordström black holes: Phase-integral approach”, Phys. Rev. D, 49, 2703-2709, (1994). 6.1.3
[17] Andersson, N., Kojima, Y., and Kokkotas, K.D., “On the oscillation spectra of ultracompact stars: An Extensive survey of gravitational wave modes”, Astrophys. J., 462, 855-864, (1996). For a related online version see: N. Andersson, et al., “On the oscillation spectra of ultracom-pact stars: An extensive survey of gravitational-wave modes”, (1995), [Online Los Alamos Archive Preprint]: cited on 29 December 1995, http://xxx.lanl.gov/abs/gr-qc/9512048. 4.2, 4.2.1, 4.2.2
[18] Andersson, N., and Kokkotas, K.D., “Gravitational waves and pulsating stars: What can we learn from future observations?”, Phys. Rev. Lett., 77, 4134-4137, (1996). For a related online version see: N. Andersson, et al., “Gravitational waves and pulsating stars: What can we learn from future observations?”, (1996), [Online Los Alamos Archive Preprint]: cited on 16 October 1996, http://xxx.lanl.gov/abs/gr-qc/9610035. 1, 5.2, 5.3, 6.1.1
[19] Andersson, N., and Kokkotas, K.D., “Towards gravitational wave astero-seismology”, Mon. Not. R. Astron. Soc., 299, 1059-1068, (1998). For a related online version see: N. Andersson, et al., “Towards gravitational-wave asteroseismology”, (1997), [Online Los Alamos Archive Preprint]: cited on 28 November 1997, http://xxx.lanl.gov/abs/gr-qc/9711088. 4.2.1, 4.2.1, 5.3, 5.4, 7, 4, 7.3
[20] Andersson, N., Kokkotas, K.D., Laguna, P., Papadopoulos, P., and Sipior, M.S., “Construction of Astrophysical Initial Data for Perturbations of Relativistic Stars”, Phys. Rev. For a related online version see: N. Andersson, et al., “Construction of Astrophysical Initial Data for Perturbations of Relativistic Stars”, (1999), [Online Los Alamos Archive Preprint]: cited on 23 April 1999, http://xxx.lanl.gov/abs/gr-qc/9904059. accepted for publication. 5
[21] Andersson, N., Kokkotas, K.D., and Schutz, B.F., “A New numerical approach to the oscillation modes of relativistic stars”, Mon. Not. R. Astron. Soc., 274, 1039-1048, (1995). For a related online version see: N. Andersson, et al., “A New numerical approach to the oscillation modes of relativistic stars”, (1995), [Online Los Alamos Archive Preprint]: cited on 8 March 1995, http://xxx.lanl.gov/abs/gr-qc/9503014. 4.2, 4
[22] Andersson, N., Kokkotas, K.D., and Schutz, B.F., “Space-time modes of relativistic stars”, Mon. Not. R. Astron. Soc., 280, 1230-1234, (1996). For a related online version see: N. Andersson, et al., “Space-time modes of relativistic stars”, (1996), [Online Los Alamos Archive Preprint]: cited on 10 January 1996, http://xxx.lanl.gov/abs/gr-qc/9601015. 4.1, 4.2, 4
[23] Andersson, N., Kokkotas, K.D., and Schutz, B.F., “Gravitational radiation limit on the spin of young neutron stars”, Astrophys. J., 510, 846-853, (1999). For a related online version see: N. Andersson, et al., “Gravitational radiation limit on the spin of young neutron stars”, (1998), [Online Los Alamos Archive Preprint]: cited on 17 May 1998, http://xxx.lanl.gov/abs/astro-ph/9805225. 4.1, 4.2.1
[24] Andersson, N., Kokkotas, K.D., and Stergioulas, N., “On the relevance of the r-mode instability for accreting neutron stars and white dwarfs”, As-trophys. J., 516, 307-314, (1999). For a related online version see: N. An-dersson, et al., “On the relevance of the r-mode instability for accreting neutron stars and white dwarfs”, (1998), [Online Los Alamos Archive Preprint]: cited on 5 June 1998, http://xxx.lanl.gov/abs/astro-ph/9806089. 4.2.1
[25] Andersson, N., and Linnaeus, S., “Quasinormal modes of a Schwarzschild black hole: Improved phase-integral treatment”, Phys. Rev. D, 46, 4179-4187, (1992). 1, 2, 6.1.3
[26] Andersson, N., and Onozawa, H., “Quasinormal modes of nearly extreme Reissner-Nordström black holes”, Phys. Rev. D, 54, 7470-7475, (1996). For a related online version see: N. Andersson, et al., “Quasinormal modes of nearly extreme Reissner-Nordström black holes”, (1996), [Online Los Alamos Archive Preprint]: cited on 23 July 1996, http://xxx.lanl.gov/abs/gr-qc/9607054. 1
[27] Andrade, Z., and Price, R.H., “Excitation of the odd-parity quasi-normal modes of compact objects”, (February, 1999), [Online Los Alamos Archive Preprint]: cited on 20 February 1999, http://xxx.lanl.gov/abs/gr-qc/9902062. 5.2, 5.3
[28] Andrade, Z., and Price, R.H., “Headon collisions of unequal mass black holes: close limit predictions.”, Phys. Rev. D, 56, 6336-6350, (1997). For a related online version see: Z. Andrade, et al., “Headon collisions of unequal mass black holes: close limit predictions.”, (1996), [Online Los Alamos Archive Preprint]: cited on 8 November 1996, http://xxx.lanl.gov/abs/gr-qc/9611022. 1
[29] Anninos, P., and Brandt, S., “Head-on collision of two unequal mass black holes”, (June, 1998), [Online Los Alamos Archive Preprint]: cited on 6 June 1998, http://xxx.lanl.gov/abs/gr-qc/9806031. 1, 1
[30] Anninos, P., Hobill, D., Seidel, E., Smarr, L., and Suen, W.-M., “The Collision of two black holes”, Phys. Rev. Lett., 71, 2851-2854, (1993). For a related online version see: P. Anninos, et al., “The Collision of two black holes”, (1993), [Online Los Alamos Archive Preprint]: cited on 14 September 1993, http://xxx.lanl.gov/abs/gr-qc/9309016. 1
[31] Anninos, P., Price, R.H., Pullin, J., Seidel, E., and Suen, W.-M., “Headon collision of two black holes: Comparison of different approaches.”, Phys. Rev. D, 52, 4462-4480, (1995). For a related online version see: P. Anninos, et al., “Headon collision of two black holes: Comparison of different approaches.”, (1995), [Online Los Alamos Archive Preprint]: cited on 23 May 1995, http://xxx.lanl.gov/abs/gr-qc/9505042. 1
[32] Araujo, M.E., Nicholson, D., and Schutz, B.F., “On the Bohr-Sommerfeld formula for black hole normal modes”, Class. Quantum Grav., 10, 11271138, (1993). 6.1.3
[33] Baber, W.G., and Hassé, H.R., “The two centre problem in wave mechanics”, Proc. Cambridge Philos. Soc. London, 25, 564-581, (1935). 6.1.4 · Zbl 0012.42801
[34] Bachelot, A.; Motet-Bachelot, A., “Resonances of Schwarzschild black holes” (1992) · Zbl 0774.53036
[35] Bachelot, A., and Motet-Bachelot, A., “Les resonances d’un trou noir de Schwarzschild”, Ann. Inst. Henri Poincare, 59, 3, (1993). 2, 2, 1, 1, 6.1.1 · Zbl 0793.53094
[36] Barack, L., “Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry”, Phys. Rev. D, 59, 044017, (1999). For a related online version see: L. Barack, “Late time dynamics of scalar perturbations outside black holes. II. Schwarzschild geometry”, (1998), [Online Los Alamos Archive Preprint]: cited on 10 November 1998, http://xxx.lanl.gov/abs/astro-ph/9811028. 1
[37] Barack, L., and Ori, A., “Late-time decay of scalar perturbations outside rotating black holes”, (February, 1999), [Online Los Alamos Archive Preprint]: cited on 25 February 1999, http://xxx.lanl.gov/abs/gr-qc/9902082. 1 · Zbl 0949.83044
[38] Bardeen, J.M., and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., 14, 7-19, (1973). 1
[39] Barreto, A.S., and Zworski, M., “Distribution of resonances for spherical black holes”, Math. Res. Lett., 4, 103-121, (1997). 1 · Zbl 0883.35120
[40] Baumgarte, T., and Schmidt, B.G., “Quasi-normal modes in coupled systems”, Class. Quantum Grav., 10, 2067-2076, (1993). 4.2.2
[41] Bender, C.M., and Orszag, S.A., Advanced Mathematical Methods for Scientists and Engineers, (McGraw-Hill, New York, 1978). 6.1.3 · Zbl 0417.34001
[42] Beyer, H.R., “On the Completeness of the Quasinormal Modes of the Pöschl-Teller Potential”, Commun. Math. Phys., 204, 397-423, (1999). For a related online version see: H.R. Beyer, “On the Completeness of the Quasinormal Modes of the Pöschl-Teller Potential”, (1998), [Online Los Alamos Archive Preprint]: cited on 10 March 1999, http://xxx.lanl.gov/abs/gr-qc/9803034. 2, 3.3 · Zbl 0984.83009
[43] Beyer, H.R., and Schmidt, B.G., “Newtonian stellar oscillations”, Astron. Astrophys., 296, 722-726, (1995). 2
[44] Bildsten, L., “Gravitational Radiation and Rotation of Accreting Neutron Stars”, l89-l93 (1998)
[45] Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order”, Class. Quantum Grav., 13, 575-584, (1996). For a related online version see: L. Blanchet, et al., “Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order”, (1996), [Online Los Alamos Archive Preprint]: cited on 13 February 1996, http://xxx.lanl.gov/abs/gr-qc/9602024. 5.3 · Zbl 0875.53011
[46] Blome, H.J., and Mashhoon, B., “Quasi-normal oscillations of Schwarzschild black hole”, Phys. Lett. A, 100, 231-234, (1984). 6.1.3
[47] Bonazzola, S., and Marck, J.-A., in Relativity in General, (Editions Fron-tieres, Gif-sur-Yvette, Cedex, 1994). 5.3 · Zbl 0687.76046
[48] Borelli, A., “Gravitational radiation emitted when a mass falls onto a compact star”, Nuovo Cimento, 112 B, 225-241, (1997). 5.2
[49] Brady, P.R., Chambers, C.M., Krivan, W., and Laguna, P., “Telling tails in the presence of a cosmological constant”, Phys. Rev. D, 55, 7538-7545, (1997). For a related online version see: P.R. Brady, et al., “Telling tails in the presence of a cosmological constant”, (1996), [Online Los Alamos Archive Preprint]: cited on 23 November 1996, http://xxx.lanl.gov/abs/astro-ph/9611056. 1
[50] Bruni, M., Matarrese, S., Mollerach, S., and Sonego, S., “Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond”, Class. Quantum Grav., 14, 2585-2606, (1997). For a related online version see: M. Bruni, et al., “Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond”, (1996), [Online Los Alamos Archive Preprint]: cited on 13 September 1996, http://xxx.lanl.gov/abs/gr-qc/9609040. 7.2 · Zbl 0885.53080
[51] Burrows, A., and Hayes, J., “Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion”, Phys. Rev. Lett., 76, 352355, (1996). For a related online version see: A. Burrows, et al., “Pulsar Recoil and Gravitational Radiation due to Asymmetrical Stellar Collapse and Explosion”, (1995), [Online Los Alamos Archive Preprint]: cited on 22 November 1995, http://xxx.lanl.gov/abs/astro-ph/9511106. 5.3
[52] Chandrasekhar, S., “The dynamical instability of gaseous masses approaching the Scwharzschild limit in general relativity”, Astrophys. J., 140, 417-433, (1964). 4.3 · Zbl 0151.47102
[53] Chandrasekhar, S., “Solutions of two problems in the theory of gravitational radiation”, Phys. Rev. Lett., 24, 611-614, (1970). 4.1, 4.2.1
[54] Chandrasekhar, S., “On the equations governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289-298, (1975). 1
[55] Chandrasekhar, S., “On one-dimensional potential barriers having equal reflexion and transmission coefficients”, Proc. R. Soc. London, Ser. A, 369, 425-433, (1980). 1
[56] Chandrasekhar, S., The Mathematical Theory of Black Holes, (Clarendon Press, Oxford, 1983). 1 · Zbl 0511.53076
[57] Chandrasekhar, S., “On algebraically special perturbations of black holes”, Proc. R. Soc. London, Ser. A, 392, 1-13, (1984). 1
[58] Chandrasekhar, S., and Detweiler, S., “The quasi-normal modes of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 344, 441-452, (1975). 6.1.2
[59] Chandrasekhar, S., and Ferrari, V., “On the non-radial oscillations of a star”, Proc. R. Soc. London, Ser. A, 432, 247-279, (1991). 4
[60] Chandrasekhar, S., and Ferrari, V., “On the non-radial oscillations of a star. III — A reconsideration of the axial modes”, Proc. R. Soc. London, Ser. A, 434, 449-457, (1991). 4.2, 4.2.2
[61] Chandrasekhar, S., and Ferrari, V., “On the non-radial oscillations of slowly rotating stars induced by the Lense-Thirring effect”, Proc. R. Soc. London, Ser. A, 433, 423-440, (1991). 4.1 · Zbl 0729.70018
[62] Ching, E.S.C., Leung, P.T., Suen, W.-M., and Young, K., “Wave propagation in gravitating systems: Late time behavior”, Phys. Rev. D, 52, 2118-2132, (1995). For a related online version see: E.S.C. Ching, et al., “Wave Propagation in Gravitational Systems: Late Time Behavior”, (1995), [Online Los Alamos Archive Preprint]: cited on 14 July 1995, http://xxx.lanl.gov/abs/gr-qc/9507035. 1
[63] Ching, E.S.C., Leung, P.T., Suen, W.-M., and Young, K., “Wave propagation in gravitational systems: Completeness of quasinormal modes”, Phys. Rev. D, 54, 3778-3791, (1996). For a related online version see: E.S.C. Ching, et al., “Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes”, (1995), [Online Los Alamos Archive Preprint]: cited on 14 July 1995, http://xxx.lanl.gov/abs/gr-qc/9507034. 3.3
[64] Cowling, TG, No article title, Mon. Not. R. Astron. Soc., 101, 367 (1941)
[65] Cox, J.P., Theory of Stellar Pulsation, (Princeton University Press, 1980). 4.3
[66] Cunningham, C.T., Price, R.H., and Moncrief, V., “Radiation from collapsing relativistic stars. I. Linearized odd-parity radiation”, Astrophys. J., 224, 643-667, (1978). 1, 1
[67] Cunningham, C.T., Price, R.H., and Moncrief, V., “Radiation from collapsing relativistic stars. I. Linearized even-parity radiation”, Astrophys. J., 230, 870-892, (1979). 1, 1
[68] Cunningham, C.T., Price, R.H., and Moncrief, V., “Radiation from collapsing relativistic stars III. Second order perurbations of collapse with rotation”, Astrophys. J., 236, 674-692, (1980). 1, 1
[69] Cutler, C., and Lindblom, L., “The effect of viscosity on neutron star oscillations”, Astrophys. J., 314, 234-241, (1987). 4.2.1
[70] Cutler, C., and Lindblom, L., “Gravitational helioseismology?”, Phys. Rev. D, 54, 1287-1290, (1996). 1
[71] Cutler, C., Lindblom, L., and Splinder, R.J., “Damping times for neutron star oscillations”, Astrophys. J., 363, 603-611, (1990). 4.2.1
[72] Damour, T., Deruelle, N., and Ruffini, R., “On quantum resonances in stationary geometries”, Lett. Nuovo Cimento, 15, 257, (1976). 3.3
[73] Davis, M., Rufinni, R., Press, W.H., and Price, R.H., “Gravitational radiation from a particle falling radially into a Schwarzschild black hole”, Phys. Rev. Lett., 27, 1466-1469, (1971). 1, 6.1
[74] Detweiler, S.L., “A variational calculation of the fundamental frequencies of quadrupole pulsation of fluid spheres in general relativity”, Astrophys. J., 197, 203-217, (1975). 4
[75] Detweiler, S.L., “A variational principle and a stability criterion for the dipole modes of pulsation of stellar models in general relativity”, Astrophys. J., 201, 440-446, (1975). 4
[76] Detweiler, S.L., “On resonant oscillations of a rapidly rotating black hole”, Proc. R. Soc. London, Ser. A, 352, 381-395, (1977). 1, 5.1
[77] Detweiler, S.L., “Klein-Gordon equation and rotating black holes”, Phys. Rev. D, 22, 2323-2326, (1980). 3.3
[78] Detweiler, S.L., and Ipser, J., “A variational principle and a stability criterion for the nonradial modes of pulsation of stellar models in general relativity”, Astrophys. J., 185, 685-707, (1973). 4.3, 4
[79] Detweiler, S.L., and Lindblom, L., “On the nonradial pulsations of general relativistic stellar models”, Astrophys. J., 292, 12-15, (1985). 4.2, 6.2
[80] Detweiler, S.L., and Szedenits, E., “Black holes and gravitational waves. II — Trajectories plunging into a nonrotating hole”, Astrophys. J., 231, 211-218, (1979). 1
[81] Duncan, R.C., and Thompson, C., “Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts”, Astrophys. J., 392, L9-L13, (1992). 5.3
[82] Dunham, J.L., “The Wentzel-Brillouin-Kramers method of solving the wave equation”, Phys. Rev., 41, 713-720, (1932). 6.1.3 · JFM 58.1353.01
[83] Echeverria, F., “Gravitational wave measurements of the mass and angular momentum of a black hole”, Phys. Rev. D, 40, 3194-3203, (1989). 5.4, 7.4
[84] Ferrari, V., Gualtieri, L., and Borrelli, A., “Stellar pulsations excited by a scattered mass”, Phys. Rev. D, 59, 124020, (1999). For a related online version see: V. Ferrari, et al., “Stellar Pulsations excited by a scattered mass”, (1999), [Online Los Alamos Archive Preprint]: cited on 22 January1999, http://xxx.lanl.gov/abs/gr-qc/9901060. 5.2, 5.3
[85] Ferrari, V., and Mashhoon, B., “New approach to the quasinormal modes of a black hole”, Phys. Rev. D, 30, 295-304, (1984). 1, 1, 6.1.3
[86] Ferrari, V., and Mashhoon, B., “Oscillations of a black hole”, Phys. Rev. Lett., 52, 1361-1346, (1984). 1, 6.1.3
[87] Finn, L.S., “g-modes of non-radially pulsating relativistic stars: The slow-motion formalism”, Mon. Not. R. Astron. Soc., 222, 393-416, (1986). 2, 4.2.1, 4 · Zbl 0633.76138
[88] Finn, L.S., “g-modes in zero-temperature neutron stars”, Mon. Not. R. Astron. Soc., 227, 265-293, (1987). 4.2.1
[89] Finn, L.S., “Detection, measurement and gravitational radiation”, Phys. Rev. D, 46, 5236-5249, (1992). 5.4
[90] Flanagan, E.E., and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57(8), 4535-4565, (1998). For a related onlineversion see: E.E. Flanagan, et al., “Measuring gravitational waves from binary black hole coalescences: I. Signal to noise for inspiral, merger, and ringdown”, (1997), [Online Los Alamos Archive Preprint]: cited on 16 January 1997, http://xxx.lanl.gov/abs/gr-qc/9701039. 5.3, 7.4
[91] Flanagan, E.E., and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. II. The wave’s information and its extraction, with and without templates”, Phys. Rev. D, 57(8), 4566-4587, (1998). For a related online version see: E.E. Flanagan, et al., “Measuring gravitational waves from binary black hole coalescences: II. the waves’ information and its extraction, with and without templates”, (1997), [Online Los Alamos Archive Preprint]: cited on 30 October 1997, http://xxx.lanl.gov/abs/gr-qc/9710129. 5.3, 7.4
[92] Frasca, S., and Papa, M.A., “Networks of resonant gravitational-wave antennas”, Int. J. Mod. Phys. D, 4, 1-50, (1995). 7.4
[93] Friedman, J.L., private communication. 7.3
[94] Friedman, J.L., and Morsink, S., “Axial instability of rotating relativistic stars”, Astrophys. J., 502, 714-720, (1998). For a related online version see: J.L. Friedman, et al., “Axial instability of rotating relativistic stars”, (1997), [Online Los Alamos Archive Preprint]: cited on 23 June 1997, http://xxx.lanl.gov/abs/gr-qc/9706073. 4.1
[95] Friedman, J.L., and Schutz, B.F., “Secular instability of rotating newtonian stars”, Astrophys. J., 222, 281-296, (1998). 4.1, 4.2.1
[96] Fröman, N., Fröman, P.O., Andersson, N., and Hökback, A., “Black hole normal modes: Phase integral treatment”, Phys. Rev. D, 45, 2609-2616, (1992). 6.1.3 · Zbl 1232.83053
[97] Fröman, P.O., and Fröman, N., JWKB Approximation, Contributions to the Theory, (North-Holland, Amsterdam, 1965). 6.1.3 · Zbl 0129.41907
[98] Gautschy, A., and Saio, H., “Stellar pulsations across the HR diagram: Part I”, Annu. Rev. Astron. Astrophys., 33, 75-113, (1995). 4.2.1
[99] Gautschy, A., and Saio, H., “Stellar pulsations across the HR diagram: Part II”, Annu. Rev. Astron. Astrophys., 34, 551, (1996). 4.2.1
[100] Gleiser, R.J., Nicasio, C.O., Price, R.H., and Pullin, J., “Gravitational radiation from Schwarzschild black holes: the second order formalism”, Phys. Rep. For a related online version see: R.J. Gleiser, et al., “Gravitational radiation from Schwarzschild black holes: the second order formalism”, (1998), [Online Los Alamos Archive Preprint]: cited on 29 July 1998, http://xxx.lanl.gov/abs/gr-qc/9807077. submitted. 1, 7.2
[101] Gleiser, R.J., Nicasio, C.O., Price, R.H., and Pullin, J., “Colliding black holes: How far can the close approximation go?”, Phys. Rev. Lett., 77, 4483-4486, (1996). For a related online version see: R.J. Gleiser, et al., “Colliding black holes: how far can the close approximation go?”, (1996), [Online Los Alamos Archive Preprint]: cited on 9 September 1996, http://xxx.lanl.gov/abs/gr-qc/9609022. 1 · Zbl 0955.83509
[102] Gleiser, R.J., Nicasio, C.O., Price, R.H., and Pullin, J., “Second order perturbations of a Schwarzschild black hole”, Class. Quantum Grav., 13, L117-L124, (1996). For a related online version see: R.J. Gleiser, et al., “Second order perturbations of a Schwarzschild black hole”, (1995), [Online Los Alamos Archive Preprint]: cited on 24 October 1995, http://xxx.lanl.gov/abs/gr-qc/9510049. 1 · Zbl 0861.35125
[103] Gleiser, R.J., Nicasio, C.O., Price, R.H., and Pullin, J., “Evolving the Bowen-York initial data for spinning black holes”, Phys. Rev. D, 57, 3401-3407, (1998). For a related online version see: R.J. Gleiser, et al., “Evolving the Bowen-York initial data for spinning black holes”, (1997), [Online Los Alamos Archive Preprint]: cited on 21 October 1997, http://xxx.lanl.gov/abs/gr-qc/9710096. 1
[104] Gleiser, R.J., Nicasio, C.O., Price, R.H., and Pullin, J., “The Collision of boosted black holes: Second order close limit calculation”, Phys. Rev. D, 59, 044024, (1999). For a related online version see: R.J. Gleiser, et al., “The Collision of boosted black holes: Second order close limit calculation”, (1998), [¿Online Los Alamos Archive Preprint]: cited on 3 March 1998, http://xxx.lanl.gov/abs/gr-qc/9802063. 1
[105] Guinn, J.W., Will, C.M., Kojima, Y., and Schutz, B.F., “High-overtone normal modes of Schwarzschild black holes”, Class. Quantum Grav., 7, L47-L53, (1990). 6.1.3
[106] Gundlach, C., Price, R.H., and Pullin, J., “Late time behavior of stellar collapse and explosions: 1. Linearized perturbations”, Phys. Rev. D, 49, 883-889, (1994). 1
[107] Gundlach, C., Price, R.H., and Pullin, J., “Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution”, Phys. Rev. D, 49, 890-899, (1994). For a related online version see: C. Gundlach, et al., “Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution”, (1993), [Online Los Alamos Archive Preprint]: cited on 12 July 1993, http://xxx.lanl.gov/abs/gr-qc/9307010. 1
[108] Gunter, D.L., “A study of the coupled gravitational and electromagnetic perturbations to the Reissner-Nordström black hole: The scattering matrix, energy conversion, and quasi-normal modes”, Philos. Trans. R. Soc. London, A 296, 497-526, (1980). 1, 6.1.2
[109] Hartle, J.B., and Wilkins, D.C., “Analytic properties of the Teukolsky equation”, Commun. Math. Phys., 38, 47-63, (1974). 3.3
[110] Harvey, J.W. et al., “The Global Oscillation Network Group (GONG) Project”, Science, 272, 1284-1286, (1996). 5.4
[111] Heisenberg, W. et al., “Der mathematiche Rahmen der Quantentheorie der Wellenfelder”, Z. Naturforsch., 1, 608, (1946). 6.1.4 · Zbl 0063.01987
[112] Ipser, J., and Price, R.H., “Nonradial pulsations of stellar models in general relativity”, Phys. Rev. D, 43, 1768-1773, (1991). 4
[113] Iyer, S., “Black-hole normal modes: A WKB approach. II. Schwarzschild black holes”, Phys. Rev. D, 35, 3632-3636, (1987). 1, 6.1.3
[114] Iyer, S., and Will, C.M., “Black-hole normal modes: A WKB approach. I Foundations and application of a higher WKB analysis of potential-barrier scattering”, Phys. Rev. D, 35, 3621-3631, (1987). 6.1.3
[115] Jensen, B.P., and Candelas, P., “Schwarzschild radial functions”, Phys. Rev. D, 33, 1590-1595, (1986). 1
[116] John, F., Partial Differential Equations, (Springer-Verlag, New York, 1991). 2 · Zbl 0742.35001
[117] Kay, B.S., and Wald, R.M., “Linear stability of Schwarzschild under perturbations which are non-vanishing on the bifurcation 2-sphere”, Class. Quantum Grav., 4, 893-898, (1987). 2, 1, 3.3 · Zbl 0647.53065
[118] Kind, S., Ehlers, J., and Schmidt, B.G., “Relativistic stellar oscillations treated as an initial value problem”, Class. Quantum Grav., 10, 21372152, (1993). 4.1, 4.1
[119] Kojima, Y., “Two families of normal modes in relativistic stars”, Prog. Theor. Phys., 79, 665-675, (1988). 4.2, 4
[120] Kojima, Y., “Equations governing the nonradial oscillations of a slowly rotating relativistic star”, Phys. Rev. D, 46, 4289-4303, (1992). 4.1
[121] Kojima, Y., “Normal modes of relativistic stars in slow rotation limit”, Astrophys. J., 414, 247-253, (1993). 4.1
[122] Kojima, Y., Andersson, N., and Kokkotas, K.D., “On the oscillation spectra of ultracompact stars”, Proc. R. Soc. London, Ser. A, 451, 341-348, (1995). For a related online version see: Y. Kojima, et al., “On the oscillation spectra of ultracompact stars”, (1995), [Online Los Alamos Archive Preprint]: cited on 7 March 1995, http://xxx.lanl.gov/abs/gr-qc/9503012. 4.2, 4.2.2
[123] Kokkotas, K.D., “Normal modes of the Kerr black hole”, Class. Quantum Grav., 8, 2217-2224, (1991). 2, 6.1.3 · Zbl 0729.83501
[124] Kokkotas, K.D., “Normal modes of the Kerr-Newmann black hole”, Nuovo Cimento B, 108, 991-998, (1993). 3, 2, 6.1.3, 7.3
[125] Kokkotas, K.D., “Axial modes for relativistic stars”, Mon. Not. R. Astron. Soc., 268, 1015-1018, (1994). 4.1, 4.2, 4.2.2
[126] Kokkotas, KD; Apostolatos, T.; Andersson, N., “The inverse problem for pulsating neutron stars: A’ fingerprint analysis’ for the supranu-clear equation of state” (1999)
[127] Kokkotas, K.D., and Schafer, G., “Tidal and Tidal-resonant Effects in Close Binary Systems”, Mon. Not. R. Astron. Soc., 275, 301-308, (1995). For a related online version see: K.D. Kokkotas, et al., “Tidal and Tidal-resonant Effects in Close Binary Systems”, (1995), [Online Los Alamos Archive Preprint]: cited on 17 February 1995, http://xxx.lanl.gov/abs/gr-qc/9502034. 5.3
[128] Kokkotas, K.D., and Schutz, B.F., “Normal modes of a model radiating system”, Gen. Relativ. Gravit., 18, 913-921, (1986). 4.2, 4.2.2 · Zbl 0595.70018
[129] Kokkotas, K.D., and Schutz, B.F., “Black hole normal modes: A WKB approach. III The Reissner-Nordström black hole”, Phys. Rev. D, 37, 3378-3387, (1988). 1, 6.1.2, 6.1.3
[130] Kokkotas, K.D., and Schutz, B.F., “W-modes: A new family of normal modes for pulsating relativistic stars”, Mon. Not. R. Astron. Soc., 255, 119-128, (1992). 4.2, 4.2.2, 4
[131] Kokkotas, K.D., and Stergioulas, N., “Analytic description of the r-mode instability in uniform density neutron stars”, Astron. Astrophys., 341, 110-116, (1999). For a related online version see: K.D. Kokkotas, et al., “Analytic description of the r-mode instability in uniform density stars”, (1997), [Online Los Alamos Archive Preprint]: cited on 22 May 1998, http://xxx.lanl.gov/abs/astro-ph/9805297. 4.2.1
[132] Krivan, W., Laguna, P., and Papadopoulos, P., “Dynamics of scalar fields in the background of rotating black holes”, Phys. Rev. D, 54, 4728-4734, (1996). For a related online version see: W. Krivan, et al., “Dynamics of Scalar Fields in the Background of Rotating Black Holes”, (1996), [Online Los Alamos Archive Preprint]: cited on 4 June 1996, http://xxx.lanl.gov/abs/gr-qc/9606003. 1, 3.3, 6.1.1
[133] Krivan, W., Laguna, P., Papadopoulos, P., and Andersson, N., “Dynamics of perturbations of rotating black holes”, Phys. Rev. D, 56, 3395-3404, (1997). For a related online version see: W. Krivan, et al., “Dynamics of perturbations of rotating black holes”, (1997), [Online Los Alamos Archive Preprint]: cited on 24 February 1997, http://xxx.lanl.gov/abs/gr-qc/. 1, 3.3, 6.1.1
[134] Lai, D., “Secular Instability of g-Modes in Rotating Neutron Stars”, Mon. Not. R. Astron. Soc., 307, 1001-1007, (1999). For a related online version see: D. Lai, “Secular Instability of g-Modes in Rotating Neutron Stars”, (1998), [Online Los Alamos Archive Preprint]: cited on 29 June 1998, http://xxx.lanl.gov/abs/astro-ph/9806378. 4.2.1
[135] Leaver, E.W., “An analytic representation for the quasi-normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285-298, (1985). 1, 2, 6.1.4
[136] Leaver, E.W., “Spectral decomposition of the perturbation response of the Schwarzschild geometry”, Phys. Rev. D, 34, 384-408, (1986). 1, 5.1 · Zbl 1222.83053
[137] Leaver, E.W., “Quasinormal modes of Reissner-Nordström black holes”, Phys. Rev. D, 41, 2986-2997, (1990). 1, 1, 6.1.4
[138] Leins, M., Nollert, H.-P., and Soffel, M.H., “Nonradial oscillations of neutron stars: A new branch of strongly damped normal modes”, Phys. Rev. D, 48, 3467-3472, (1993). 4.2, 4.2.2, 4
[139] Levin, Y., “Runaway heating by r-modes of neutron stars in low-mass X-Ray binaries”, Astrophys. J., 517, 328-333, (1999). For a related online version see: Y. Levin, “Runaway Heating By R-modes of Neutron Stars in Low Mass X-ray Binaries”, (1998), [Online Los AlamosArchive Preprint]: cited on 29 October 1998, http://xxx.lanl.gov/abs/astro-ph/9810471. 4.2.1
[140] Lindblom, L.; Francaviglia, M. (ed.); Longhi, G. (ed.); Lusanna, L. (ed.); Sorace, E. (ed.), “Stellar Stability according to Newtonian Theory and General Relativity” (1997) · Zbl 0940.00062
[141] Lindblom, L., and Detweiler, S.L., “The quadrupole oscillations of neutron stars”, Astrophys. J. Suppl. Ser., 53, 73-92, (1983). 4.2, 4.2.1, 4.2.1, 4
[142] Lindblom, L., Owen, B.J., and Morsink, S.M., “Gravitational Radiation Instability in Hot Young Neutron Stars”, Phys. Rev. Lett., 80, 4843-4846, (1998). For a related online version see: L. Lindblom, et al., “Gravitational Radiation Instability in Hot Young Neutron Stars”, (1998), [Online Los Alamos Archive Preprint]: cited on 13 March 1998, http://xxx.lanl.gov/abs/gr-qc/9803053. 4.1, 4.2.1
[143] Liu, H., “Asymptotic behaviour of quasi-normal mode od Schwarzschild black holes”, Class. Quantum Grav., 12, 543-552, (1995). 1
[144] Liu, H., and Mashhoon, B., “On the spectrum of oscillations of a Schwarzschild black hole”, Class. Quantum Grav., 13, 233-251, (1996). 1 · Zbl 0845.53071
[145] Majumdar, B., and Panchapakesan, N., “Schwarzschild black-hole normal modes using the Hill determinant”, Phys. Rev. D, 40, 2568-2571, (1989). 6.1.4
[146] McDermott, P.N., Van Horn, H.M., and Hansen, C.J., “Nonradial oscillations of neutron stars”, Astrophys. J., 325, 725-748, (1988). 4, 4.2, 4.2.1
[147] McDermott, P.N., Van Horn, H.M., and Scholl, J.F., “Nonradial g-mode oscillations of warm neutron stars”, Astrophys. J., 268, 837-848, (1983).4.2, 4.2.1
[148] Meixner, J., and Schäfke, F.W., Mathieusche Functionen und Sphäroidfunctionen, (Springer Verlag, Berlin, 1954). 3.2 · Zbl 0058.29503
[149] Melrose, R., Geometrical Scattering Theory, (Cambridge University Press, 1995). 9 · Zbl 0849.58071
[150] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W. H. Freeman, New York, 1973). 4.3
[151] Mönchmeyer, R., Schoäfer, G., Müller, E., and Kates, R.E., “Gravitational waves from the collapse of rotating stellar cores”, Astron. Astrophys., 246, 417-440, (1991). 5.2
[152] Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys. (N. Y.), 88, 323-342, (1974). 3.1, 4.1
[153] Moncrief, V., “Odd-parity stability of a Reissner-Nordström black holes”, Phys. Rev. D, 9, 2707-2709, (1974). 1
[154] Moncrief, V., “Stability of a Reissner-Nordström black hole”, Phys. Rev. D, 10, 1057-1059, (1974). 1
[155] Nakamura, T., and Oohara, K., “Gravitational radiation from coalescing binary neutron stars. IV. Tidal disruption”, Prog. Theor. Phys., 86, 7388, (1991). 5.2
[156] Nollert, H.-P., Astrophysik in der Schwarzschildmetrik am Beispiel von Quasi-Normalmoden schwarzer Löcher und Lichtablenkung bei Röntgenpulsaren, PhD thesis, (University of Tubingen, 1990). 6.1.2, 6.1.4
[157] Nollert, H.-P., “Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts”, Phys. Rev. D, 47, 5253-5258, (1993). 1, 1, 6.1.4
[158] Nollert, H.-P., and Price, R.H., “Quantifying excitations of quasinormal mode systems”, J. Math. Phys., 40, 980-1010, (1999). For a related online version see: H.-P. Nollert, et al., “Quantifying excitations of quasinormal mode systems”, (1998), [Online Los Alamos Archive Preprint]: cited on22 October 1998, http://xxx.lanl.gov/abs/gr-qc/9810074. 3.3 · Zbl 0946.83016
[159] Nollert, H.-P., and Schmidt, B.G., “Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation”, Phys. Rev. D, 45, 2617-2627, (1992). 1, 6.1.2 · Zbl 1232.83054
[160] Onozawa, H., “Detailed study of quasinormal frequencies of the Kerr black hole”, Phys. Rev. D, 55, 3593-3602, (1997). For a related online version see: H. Onozawa, “A detailed study of quasinormal frequencies of the Kerr black hole”, (1996), [Online Los Alamos Archive Preprint]: cited on 22 October 1996, http://xxx.lanl.gov/abs/gr-qc/9610048. 2
[161] Owen, B.J., Lindblom, L., Cutler, C., Schutz, B.F., Vecchio, A., and An-dersson, N., “Gravitational waves from hot young rapidly rotating neutron stars”, Phys. Rev. D, 58, 084020, (1998). For a related online version see: B.J. Owen, et al., “Gravitational waves from hot young rapidly rotating neutron stars”, (1998), [Online Los Alamos Archive Preprint]: cited on 20 April 1998, http://xxx.lanl.gov/abs/gr-qc/9804044. 4.1, 4.2.1
[162] Persides, S., “On the radial wave equation in Schwarzschild space-time”, J. Math. Phys., 14, 1017-1021, (1973). 1
[163] Pijpers, F.P., “Helioseismic determination of the solar gravitational quadrupole moment”, Mon. Not. R. Astron. Soc., 297, L76-L80, (1998). 1
[164] Press, W.H., “Long wave trains of gravitational waves from a vibrating black hole”, Astrophys. J., 170, L105-L108, (1971). 1, 1
[165] Press, W.H., and Teukolsky, S., “Perturbations of a rotating black hole. II Dynamical stability of the Kerr metric”, Astrophys. J., 185, 649-673, (1973). 3.3
[166] Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations”, Phys. Rev. D, 5, 24192438, (1972). 1
[167] Price, R.H., “Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields”, Phys. Rev. D, 5, 2439-2454, (1972). 1
[168] Price, R.H., and Husain, V., “Model for the completeness of quasinormal modes of relativistic stellar oscillations”, Phys. Rev. Lett., 68, 1973-1976, (1992). 4.3 · Zbl 0969.85502
[169] Price, R.H., and Ipser, J., “Relation of gauge formalisms for pulsations of general-relativistic stellar models”, Phys. Rev. D, 44, 307-313, (1991). 4
[170] Price, R.H., and Pullin, J., “Colliding black holes: The Close limit”, Phys. Rev. Lett., 72, 3297-3300, (1994). For a related online version see: R.H.Price, et al., “Colliding black holes: The Close limit”, (1994), [OnlineLos Alamos Archive Preprint]: cited on 22 February 1994, http://xxx.lanl.gov/abs/gr-qc/9402039. 1, 5 · Zbl 0973.83532
[171] Price, R.H., and Thorne, K.S., “Non-radial pulsation of general-relativistic stellar models. II Properties of the gravitational waves”, Astrophys. J., 155, 163-182, (1969). 4.2
[172] Pullin, J.; Dadhich, N. (ed.); Narlikar, J. (ed.), “Colliding black holes: Analytic insights”, 87-106 (1998), Pune
[173] Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108, 1063-1069, (1957). 1, 1 · Zbl 0079.41902
[174] Rendall, A.D., and Schmidt, B.G., “Existence and properties of spherically symmetric static fluid bodies with a given equation of state”, Class. Quantum Grav., 8, 985-1000, (1991). 4.1 · Zbl 0724.53055
[175] Ruffert, M., Janka, H.Th., and Schäfer, G., “Coalescing neutron stars-a step towards physical models I. Hydrodynamical evolution and gravitational-wave emission”, Astron. Astrophys., 311, 532-566, (1995). 5.2
[176] Schutz, B.F., private communication. 7.3
[177] Schutz, BF; Hartle, B. (ed.); Carter, J. B (ed.), “Relativistic gravitational instabilities”, 123-154 (1987), New York
[178] Schutz, B.F., “Gravitational wave sources”, Class. Quantum Grav., 13, A219-A238, (1996). 5.3, 5.3 · Zbl 0875.83019
[179] Schutz, BF; Lasota, JA (ed.); Marck, JP (ed.), “The detection of gravitational waves” (1997)
[180] Schutz, B.F., and Will, C.M., “Black hole normal modes: a semianalytic approach”, Astrophys. J., 291, L33-L36, (1985). 1, 6.1.3
[181] Seidel, E., “A comment on the eigenvalues of spin-weighted spheroidal functions”, Class. Quantum Grav., 6, 1057-1062, (1989). 3.2
[182] Seidel, E., “Gravitational radiation from even-parity perturbations of stellar collapse: Mathematical formalism and numerical methods”, Phys. Rev. D, 42, 1884-1907, (1990). 5.2
[183] Seidel, E., “Normal-mode excitation from stellar collapse to a black hole: Odd-parity perturbations”, Phys. Rev. D, 44, 950-965, (1991). 5.2
[184] Seidel, E.; Iyer, B. (ed.); Bhawal, B. (ed.), “The synergy between numerical and perturbative approaches to black holes” (1999)
[185] Seidel, E., and Iyer, S., “Black hole normal modes: A WKB approach. IV Kerr black holes”, Phys. Rev. D, 41, 374-382, (1990). 2, 6.1.3
[186] Seidel, E., and Moore, T., “Gravitational radiation from realistic relativistic stars: odd parity fluid perturbations”, Phys. Rev. D, 35, 2287-2296, (1987). 5.2
[187] Seidel, E., Myra, E.S., and Moore, T., “Gravitational radiation from type II supernova: The effect of the high density equation of state”, Phys. Rev. D, 38, 2349-2356, (1988). 5.2
[188] Shapiro, S., and Teukolsky, S., Neutron Stars, White Dwarfs and Black Holes, (Willey Interscience, New York, 1983). 4.3
[189] Simon, B., “Resonances and complex scaling — rigorous overview”, Int. J. Quantum Chem., XIV, 529, (1978). 9
[190] Skibsted, K., “Truncated Gamow functions, alpha-decay and the exponential law”, Commun. Math. Phys., 104(4), 591-604, (1986). 9 · Zbl 0594.58062
[191] Stark, R.F., and Piran, T., “Gravitational-wave emission from rotating gravitational collapse”, Phys. Rev. Lett., 55, 891-894, (1985). 1
[192] Stergioulas, N., “Rotating Stars in Relativity”, (June, 1998), [Article in Online Journal Living Reviews in Relativity]: cited on 20 August 1999, http://www.livingreviews.org/Articles/Volume1/1998-8stergio. 4, 4.3, 7.3 · Zbl 1023.83014
[193] Stewart, J.M., “On the stability of Kerr’s space-time”, Proc. R. Soc. London, Ser. A, 344, 65-79, (1975). 3.3
[194] Sun, Y., and Price, R.H., “Excitation of quasinormal ringing of a Schwarzschild black hole”, Phys. Rev. D, 38, 1040-1052, (1988). 5.1
[195] Sun, Y., and Price, R.H., “Excitation of Schwarzschild quasinormal modes by collapse”, Phys. Rev. D, 41, 2492, (1990). 5.1
[196] Teukolsky, S., “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations”, Phys. Rev. Lett., 29, 1114-1118, (1972). 3.2
[197] Teukolsky, S., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations”, Astrophys. J., 185, 635-648, (1973). 5.1
[198] Thorne, K.S., “Gravitational radiation damping”, Phys. Rev. Lett., 21, 320-323, (1968). 1, 4.2
[199] Thorne, K.S., “Nonradial pulsation of general-relativistic stellar models. III. Analytic and numerical results for neutron star”, Astrophys. J., 158, 1-16, (1969). 1, 4.2, 4
[200] Thorne, K.S., “Nonradial pulsation of general-relativistic stellar models. IV. The weak-field limit”, Astrophys. J., 158, 997-1019, (1969). 1, 4.1, 4.2
[201] Thorne, KS, “Probing Black Holes and Relativistic Stars with Gravitational Waves” (1998) · Zbl 0937.83011
[202] Thorne, K.S., and Campolattaro, A., “Non-radial pulsation of general-relativistic stellar models. I. Analytic analysis for <Emphasis Type=”Italic“>ℓ ≥ 2”, Astrophys. J., 149, 591-611, (1967). 1, 3.1, 4.1, 4.2
[203] Tominaga, K., Saijo, M., and Maeda, K., “Gravitational waves from a test particle scattered by a neutron star: axial mode case”, Phys. Rev. D, 60, 024004, (1999). For a related online version see: K. Tominaga, et al., “Gravitational waves from a test particle scattered by a neutron star: axial mode case”, (1999), [Online Los Alamos Archive Preprint]: cited on 14 January 1999, http://xxx.lanl.gov/abs/gr-qc/9901040. 5.2, 5.3
[204] Unno, W., Osaki, Y., Ando, H., Saio, H., and Shibahashi, H., Non-radial Oscillations of Stars, (University Tokyo Press, Tokyo, 1989). 1
[205] Van den Bergh, S., and Tammann, G.A., “Galactic and extragalactic supernova rates”, Annu. Rev. Astron. Astrophys., 29, 363-407, (1991). 5.3
[206] Van Horn, H.M., “Micropulses, drifting subpulses, and nonradial oscillations of neutron stars”, Astrophys. J., 236, 899-903, (1980). 4
[207] Vishveshwara, C.V., “Scattering of gravitationa radiation by a Schwarzschild black-hole”, Nature, 227, 936-938, (1970). 1, 6.1.1
[208] Whiting, B.F., “Mode stability of the Kerr black hole”, J. Math. Phys., 30, 1301-1305, (1989). 3.3 · Zbl 0689.53041
[209] Xanthopoulos, B., “Metric and electromagnetic perturbations of the Reissner-Nordstroum black hole”, Proc. R. Soc. London, Ser. A, 378, 7388, (1981). 1 · Zbl 0474.34035
[210] Yamada, S., and Sato, K., “Gravitational Radiation from Rotational Collapse of a Supernova Core”, Astrophys. J., 450, 245-252, (1995). 5.2
[211] Yoshida, S., Eriguchi, Y., and Futamase, T., “Quasinormal modes of boson stars”, Phys. Rev. D, 50, 6235-6246, (1994). 4
[212] Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analysed in tensor harmonics”, Phys. Rev. D, 2, 2141-2160, (1970). 1, 3.1, 1 · Zbl 1227.83025
[213] Zerilli, F.J., “Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordstroum geometry”, Phys. Rev. D, 9, 860, (1974). 1
[214] Zouros, T.J.M., and Eardley, D.M., “Instabilities of massive scalar perturbations of a rotating black hole”, Ann. Phys. (N. Y.), 118, 139-155, (1979). 3.3
[215] Zwerger, T., and Müller, E., “Dynamics and gravitational wave signature of axisymmetric rotational core collapse”, Astron. Astrophys., 320, 209-227, (1997). 5.2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.