×

Interpreting binary neutron star mergers: describing the binary neutron star dynamics, modelling gravitational waveforms, and analyzing detections. (English) Zbl 1482.83030

Summary: Gravitational waves emitted from the coalescence of neutron star binaries open a new window to probe matter and fundamental physics in unexplored, extreme regimes. To extract information about the supranuclear matter inside neutron stars and the properties of the compact binary systems, robust theoretical prescriptions are required. We give an overview about general features of the dynamics and the gravitational wave signal during the binary neutron star coalescence. We briefly describe existing analytical and numerical approaches to investigate the highly dynamical, strong-field region during the merger. We review existing waveform approximants and discuss properties and possible advantages and shortcomings of individual waveform models, and their application for real gravitational-wave data analysis.

MSC:

83C35 Gravitational waves
85A15 Galactic and stellar structure
70F05 Two-body problems
81V35 Nuclear physics

Software:

EFTofPNG; LORENE

References:

[1] Einstein Telescope, http://www.et-gw.eu/
[2] LORENE: Langage Objet pour la RElativité NumériquE, http://www.lorene.obspm.fr
[3] LIGO Document T0900288-v3. Advanced LIGO anticipated sensitivity curves. https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
[4] Aasi, J., Advanced LIGO. Class. Quant. Grav., 32, 074001 (2015) · doi:10.1088/0264-9381/32/7/074001
[5] Abbott, BP, A gravitational-wave standard siren measurement of the Hubble constant, Nature (2017) · doi:10.1038/nature24471
[6] Abbott, BP, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J., 848, 2, L13 (2017) · doi:10.3847/2041-8213/aa920c
[7] Abbott, BP, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119, 16, 161101 (2017) · doi:10.1103/PhysRevLett.119.161101
[8] Abbott, BP, Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848, 2, L12 (2017) · doi:10.3847/2041-8213/aa91c9
[9] Abbott, BP, Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, Astrophys. J., 851, 1, L16 (2017) · doi:10.3847/2041-8213/aa9a35
[10] Abbott, BP, GW170817: measurements of neutron star radii and equation of state Phys, Rev. Lett., 121, 161101 (2018) · doi:10.1103/PhysRevLett.121.161101
[11] Abbott, B.P., et al.: A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo arXiv e-prints arXiv:1908.06060
[12] Abbott, BP, Properties of the binary neutron star merger GW170817, Phys. Rev. X, 9, 1, 011001 (2019) · doi:10.1103/PhysRevX.9.011001
[13] Abbott, B.P., et al.: GW190425: Observation of a compact binary coalescence with total mass \(\sim 3.4 M_{\odot }\). Astrophys. J. Lett. 892, L3 (2020). doi:10.3847/2041-8213/ab75f5
[14] Abbott, BP, Model comparison from LIGO-Virgo data on GW170817’s binary components and consequences for the merger remnant, Class. Quant. Grav., 37, 4, 045006 (2020) · doi:10.1088/1361-6382/ab5f7c
[15] Abdelsalhin, T.; Gualtieri, L.; Pani, P., Post-Newtonian spin-tidal couplings for compact binaries, Phys. Rev., D98, 10, 104046 (2018) · doi:10.1103/PhysRevD.98.104046
[16] Abdelsalhin, T.; Maselli, A.; Ferrari, V., Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars, Phys. Rev., D97, 8, 084014 (2018) · doi:10.1103/PhysRevD.97.084014
[17] Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, TGF; Tompitak, M.; Veitch, J.; Vitale, S.; Broeck, CVD, Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars, Phys. Rev., D92, 2, 023012 (2015) · doi:10.1103/PhysRevD.92.023012
[18] Agathos, M.; Zappa, F.; Bernuzzi, S.; Perego, A.; Breschi, M.; Radice, D., Inferring prompt black-hole formation in neutron star mergers from gravitational-wave data Phys, Rev., D101, 044006 (2020) · doi:10.1103/PhysRevD.101.044006
[19] Ajith, P.; Babak, S.; Chen, Y.; Hewitson, M.; Krishnan, B., Phenomenological template family for black-hole coalescence waveforms, Class. Quant. Grav., 24, S689-S700 (2007) · Zbl 1206.83092 · doi:10.1088/0264-9381/24/19/S31
[20] Ajith, P.; Babak, S.; Chen, Y.; Hewitson, M.; Krishnan, B., A template bank for gravitational waveforms from coalescing binary black holes I, Non-spinning binaries. Phys. Rev., D77, 104017 (2008) · doi:10.1103/PhysRevD.79.129901
[21] Akcay, S., Forecasting gamma-ray bursts using gravitational waves, Ann. Phys., 531, 1, 1800365 (2019) · Zbl 07758791 · doi:10.1002/andp.201800365
[22] Akcay, S.; Bernuzzi, S.; Messina, F.; Nagar, A.; Ortiz, N.; Rettegno, P., Effective-one-body multipolar waveform for tidally interacting binary neutron stars up to merger, Phys. Rev., D99, 4, 044051 (2019) · doi:10.1103/PhysRevD.99.044051
[23] Alford, MG; Bovard, L.; Hanauske, M.; Rezzolla, L.; Schwenzer, K., Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers, Phys. Rev. Lett., 120, 4, 041101 (2018) · doi:10.1103/PhysRevLett.120.041101
[24] AlGendy, M.; Morsink, SM, Universality of the Acceleration Due to Gravity on the Surface of a Rapidly Rotating Neutron Star, Astrophys. J., 791, 78 (2014) · doi:10.1088/0004-637X/791/2/78
[25] Alvarez-Castillo, DE; Blaschke, DB; Grunfeld, AG; Pagura, VP, Third family of compact stars within a nonlocal chiral quark model equation of state, Phys. Rev., D99, 6, 063010 (2019) · doi:10.1103/PhysRevD.99.063010
[26] Anderson, M.; Hirschmann, EW; Lehner, L.; Liebling, SL; Motl, PM, Magnetized neutron star mergers and gravitational wave signals, Phys. Rev. Lett., 100, 191101 (2008) · doi:10.1103/PhysRevLett.100.191101
[27] Andersson, N.; Ho, WCG, Using gravitational-wave data to constrain dynamical tides in neutron star binaries, Phys. Rev., D97, 2, 023016 (2018) · doi:10.1103/PhysRevD.97.023016
[28] Andersson, N., Pnigouras, P.: The seismology of Love: an effective model for the neutron star tidal deformability arXiv e-prints arXiv:1905.00012 (2019)
[29] Annala, E.; Ecker, C.; Hoyos, C.; Jokela, N.; Rodriguez Fernandez, D.; Vuorinen, A., Holographic compact stars meet gravitational wave constraints, JHEP, 12, 078 (2018) · Zbl 1405.83012 · doi:10.1007/JHEP12(2018)078
[30] Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A., Gravitational-wave constraints on the neutron-star-matter Equation of State, Phys. Rev. Lett., 120, 17, 172703 (2018) · doi:10.1103/PhysRevLett.120.172703
[31] Antonelli, A.; Buonanno, A.; Steinhoff, J.; van de Meent, M.; Vines, J., Energetics of two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev., D99, 10, 104004 (2019) · doi:10.1103/PhysRevD.99.104004
[32] Antonelli, A.; van de Meent, M.; Buonanno, A.; Steinhoff, J.; Vines, J., Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information, Phys. Rev., D101, 2, 024024 (2020) · doi:10.1103/PhysRevD.101.024024
[33] Babak, S.; Taracchini, A.; Buonanno, A., Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity, Phys. Rev., D95, 2, 024010 (2017) · doi:10.1103/PhysRevD.95.024010
[34] Babiuc, M.; Szilagyi, B.; Hawke, I.; Zlochower, Y., Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution, Class. Quant. Grav., 22, 5089-5108 (2005) · Zbl 1092.83005 · doi:10.1088/0264-9381/22/23/011
[35] Baiotti, L., Gravitational waves from neutron star mergers and their relation to the nuclear equation of state, Prog. Part. Nucl. Phys., 109, 103714 (2019) · doi:10.1016/j.ppnp.2019.103714
[36] Baiotti, L.; Damour, T.; Giacomazzo, B.; Nagar, A.; Rezzolla, L., Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars, Phys. Rev. Lett., 105, 261101 (2010) · doi:10.1103/PhysRevLett.105.261101
[37] Baiotti, L.; Damour, T.; Giacomazzo, B.; Nagar, A.; Rezzolla, L., Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models, Phys. Rev., D84, 024017 (2011) · doi:10.1103/PhysRevD.84.024017
[38] Baiotti, L.; Rezzolla, L., Binary neutron star mergers: a review of Einstein’s richest laboratory, Rept. Prog. Phys., 80, 9, 096901 (2017) · doi:10.1088/1361-6633/aa67bb
[39] Baker, T.; Bellini, E.; Ferreira, PG; Lagos, M.; Noller, J.; Sawicki, I., Strong constraints on cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119, 25, 251301 (2017) · doi:10.1103/PhysRevLett.119.251301
[40] Balmelli, S., Jetzer, P.: Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins. Phys. Rev. D87(12), 124036 (2013). doi:10.1103/PhysRevD.87.124036. [Erratum: Phys. Rev. D90(8), 089905 (2014)]
[41] Banihashemi, B.; Vines, J., Gravitomagnetic tidal effects in gravitational waves from neutron star binaries, Phys. Rev., D101, 064003 (2020) · doi:10.1103/PhysRevD.101.064003
[42] Barack, L.; Damour, T.; Sago, N., Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism, Phys. Rev., D82, 084036 (2010) · doi:10.1103/PhysRevD.82.084036
[43] Barack, L.; Pound, A., Self-force and radiation reaction in general relativity, Rept. Prog. Phys., 82, 1, 016904 (2019) · doi:10.1088/1361-6633/aae552
[44] Barack, L.; Sago, N., Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole, Phys. Rev. Lett., 102, 191101 (2009) · doi:10.1103/PhysRevLett.102.191101
[45] Barausse, E.; Buonanno, A., An Improved effective-one-body Hamiltonian for spinning black-hole binaries, Phys. Rev., D81, 084024 (2010) · doi:10.1103/PhysRevD.81.084024
[46] Barausse, E.; Buonanno, A., Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings, Phys. Rev., D84, 104027 (2011) · doi:10.1103/PhysRevD.84.104027
[47] Barausse, E.; Racine, E.; Buonanno, A., Hamiltonian of a spinning test-particle in curved spacetime, Phys. Rev., D80, 104025 (2009) · doi:10.1103/PhysRevD.80.104025
[48] Barkett, K., Gravitational waveforms for neutron star binaries from binary black hole simulations, Phys. Rev., D93, 4, 044064 (2016) · doi:10.1103/PhysRevD.93.044064
[49] Baumann, D.; Chia, HS; Porto, RA, Probing ultralight bosons with binary black holes, Phys. Rev., D99, 4, 044001 (2019) · doi:10.1103/PhysRevD.99.044001
[50] Baumann, D.; Chia, HS; Porto, RA; Stout, J., Gravitational Collider Physics, Phys. Rev., D101, 083019 (2020) · doi:10.1103/PhysRevD.101.083019
[51] Baumgarte, TW; Shapiro, SL; Shibata, M., On the maximum mass of differentially rotating neutron stars, Astrophys. J., 528, L29 (2000) · doi:10.1086/312425
[52] Bauswein, A.; Bastian, NUF; Blaschke, DB; Chatziioannou, K.; Clark, JA; Fischer, T.; Oertel, M., Identifying a first-order phase transition in neutron star mergers through gravitational waves, Phys. Rev. Lett., 122, 6, 061102 (2019) · doi:10.1103/PhysRevLett.122.061102
[53] Bauswein, A.; Baumgarte, T.; Janka, HT, Prompt merger collapse and the maximum mass of neutron stars, Phys. Rev. Lett., 111, 13, 131101 (2013) · doi:10.1103/PhysRevLett.111.131101
[54] Bauswein, A.; Goriely, S.; Janka, HT, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers, Astrophys. J., 773, 78 (2013) · doi:10.1088/0004-637X/773/1/78
[55] Bauswein, A.; Janka, HT, Measuring neutron-star properties via gravitational waves from binary mergers, Phys. Rev. Lett., 108, 011101 (2012) · doi:10.1103/PhysRevLett.108.011101
[56] Bauswein, A.; Just, O.; Janka, HT; Stergioulas, N., Neutron-star radius constraints from GW170817 and future detections, Astrophys. J., 850, 2, L34 (2017) · doi:10.3847/2041-8213/aa9994
[57] Bauswein, A.; Stergioulas, N., Unified picture of the post-merger dynamics and gravitational wave emission in neutron star mergers, Phys. Rev., D91, 12, 124056 (2015) · doi:10.1103/PhysRevD.91.124056
[58] Bauswein, A.; Stergioulas, N.; Janka, HT, Revealing the high-density equation of state through binary neutron star mergers, Phys. Rev., D90, 2, 023002 (2014) · doi:10.1103/PhysRevD.90.023002
[59] Baym, G.; Furusawa, S.; Hatsuda, T.; Kojo, T.; Togashi, H., New neutron star equation of state with Quark-Hadron crossover, Astrophys. J., 885, 42 (2019) · doi:10.3847/1538-4357/ab441e
[60] Bernard, L., Dipolar tidal effects in scalar-tensor theories, Phys. Rev., D101, 2, 021501 (2020) · doi:10.1103/PhysRevD.101.021501
[61] Bernard, L.; Blanchet, L.; Bohe, A.; Faye, G.; Marsat, S., Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order, Phys. Rev., D96, 10, 104043 (2017) · doi:10.1103/PhysRevD.96.104043
[62] Bernard, L.; Blanchet, L.; Faye, G.; Marchand, T., Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order, Phys. Rev., D97, 4, 044037 (2018) · doi:10.1103/PhysRevD.97.044037
[63] Bernuzzi, S.; Dietrich, T., Gravitational waveforms from binary neutron star mergers with high-order weighted-essentially-nonoscillatory schemes in numerical relativity, Phys. Rev., D94, 6, 064062 (2016) · doi:10.1103/PhysRevD.94.064062
[64] Bernuzzi, S.; Dietrich, T.; Nagar, A., Modeling the complete gravitational wave spectrum of neutron star mergers, Phys. Rev. Lett., 115, 091101 (2015) · doi:10.1103/PhysRevLett.115.091101
[65] Bernuzzi, S.; Dietrich, T.; Tichy, W.; Brügmann, B., Mergers of binary neutron stars with realistic spin, Phys. Rev., D89, 104021 (2014) · doi:10.1103/PhysRevD.89.104021
[66] Bernuzzi, S.; Nagar, A.; Balmelli, S.; Dietrich, T.; Ujevic, M., Quasi-universal properties of neutron star mergers, Phys. Rev. Lett., 112, 201101 (2014) · doi:10.1103/PhysRevLett.112.201101
[67] Bernuzzi, S.; Nagar, A.; Dietrich, T.; Damour, T., Modeling the dynamics of tidally interacting binary neutron stars up to the merger, Phys. Rev. Lett., 114, 16, 161103 (2015) · doi:10.1103/PhysRevLett.114.161103
[68] Bernuzzi, S.; Nagar, A.; Thierfelder, M.; Brügmann, B., Tidal effects in binary neutron star coalescence, Phys. Rev., D86, 044030 (2012) · doi:10.1103/PhysRevD.86.044030
[69] Bernuzzi, S.; Nagar, A.; Zenginoglu, A., Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform, Phys. Rev., D83, 064010 (2011) · doi:10.1103/PhysRevD.83.064010
[70] Bernuzzi, S.; Nagar, A.; Zenginoglu, A., Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the non-spinning case, Phys. Rev., D86, 104038 (2012) · doi:10.1103/PhysRevD.86.104038
[71] Bernuzzi, S.; Radice, D.; Ott, CD; Roberts, LF; Moesta, P.; Galeazzi, F., How loud are neutron star mergers?, Phys. Rev., D94, 2, 024023 (2016) · doi:10.1103/PhysRevD.94.024023
[72] Bernuzzi, S.; Thierfelder, M.; Brügmann, B., Accuracy of numerical relativity waveforms from binary neutron star mergers and their comparison with post-Newtonian waveforms, Phys. Rev., D85, 104030 (2012) · doi:10.1103/PhysRevD.85.104030
[73] Berti, E.; Iyer, S.; Will, CM, Post-Newtonian diagnosis of quasiequilibrium configurations of neutron star neutron star and neutron star black hole binaries, Phys. Rev., D77, 2, 024019 (2008) · doi:10.1103/PhysRevD.77.024019
[74] Bhat, SA; Bandyopadhyay, D., Neutron star equation of state and GW170817, J. Phys., G46, 1, 014003 (2019) · doi:10.1088/1361-6471/aaef45
[75] Bildsten, L.; Cutler, C., Tidal interactions of inspiraling compact binaries, Astrophys. J., 400, 175-180 (1992) · doi:10.1086/171983
[76] Bini, D.; Damour, T., Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism, Phys. Rev., D90, 12, 124037 (2014) · doi:10.1103/PhysRevD.90.124037
[77] Bini, D.; Damour, T., Conservative second-order gravitational self-force on circular orbits and the effective one-body formalism, Phys. Rev., D93, 10, 104040 (2016) · doi:10.1103/PhysRevD.93.104040
[78] Bini, D.; Damour, T.; Faye, G., Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description, Phys. Rev., D85, 124034 (2012) · doi:10.1103/PhysRevD.85.124034
[79] Bini, D.; Damour, T.; Geralico, A., Novel approach to binary dynamics: application to the fifth post-Newtonian level, Phys. Rev. Lett., 123, 23, 231104 (2019) · doi:10.1103/PhysRevLett.123.231104
[80] Bini, D.; Geralico, A., Tidal invariants along the worldline of an extended body in Kerr spacetime, Phys. Rev., D91, 8, 084012 (2015) · doi:10.1103/PhysRevD.91.084012
[81] Binnington, T.; Poisson, E., Relativistic theory of tidal Love numbers, Phys. Rev., D80, 084018 (2009) · doi:10.1103/PhysRevD.80.084018
[82] Birnholtz, O.; Hadar, S.; Kol, B., Theory of post-Newtonian radiation and reaction, Phys. Rev., D88, 10, 104037 (2013) · doi:10.1103/PhysRevD.88.104037
[83] Birnholtz, O.; Hadar, S.; Kol, B., Radiation reaction at the level of the action, Int. J. Mod. Phys., A29, 24, 1450132 (2014) · Zbl 1301.70018 · doi:10.1142/S0217751X14501322
[84] Bishop, NT; Gomez, R.; Lehner, L.; Winicour, J., Cauchy characteristic extraction in numerical relativity, Phys. Rev., D54, 6153-6165 (1996) · doi:10.1103/PhysRevD.54.6153
[85] Bishop, NT; Rezzolla, L., Extraction of gravitational waves in numerical relativity, Living Rev. Relativ., 19, 2 (2016) · Zbl 1366.83020 · doi:10.1007/lrr-2016-2
[86] Biswas, B.; Nandi, R.; Char, P.; Bose, S., Role of crustal physics in the tidal deformation of a neutron star, Phys. Rev., D100, 4, 044056 (2019) · doi:10.1103/PhysRevD.100.044056
[87] Blanchet, L.: Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries. Living Rev. Relativ. 17, 2 (2014). doi:10.12942/lrr-2014-2 · Zbl 1316.83003
[88] Blanchet, L., Damour, T.: Radiative gravitational fields in general relativity. I. General structure of the field outside the source. R. Soc. Lond. Proc. Ser. A 320, 379-430 (1986) · Zbl 0604.35073
[89] Blanchet, L., Damour, T.: Post-Newtonian generation of gravitational waves. Ann. Poincare Phys. Theor. 50, 377-408 (1989). http://www.numdam.org/item/?id=AIHPA_1989__50_4_377_0 · Zbl 0684.53059
[90] Blanchet, L.; Damour, T.; Iyer, BR; Will, CM; Wiseman, A., Gravitational radiation damping of compact binary systems to second post-Newtonian order, Phys. Rev. Lett., 74, 3515-3518 (1995) · doi:10.1103/PhysRevLett.74.3515
[91] Blanchet, L.; Iyer, BR; Will, CM; Wiseman, AG, Gravitational wave forms from inspiralling compact binaries to second post-Newtonian order, Class. Quant. Grav., 13, 575-584 (1996) · Zbl 0875.53011 · doi:10.1088/0264-9381/13/4/002
[92] Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G., Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach, Nucl. Phys. B, 955, 115041 (2020) · Zbl 1473.83010 · doi:10.1016/j.nuclphysb.2020.115041
[93] Bohe, A.; Faye, G.; Marsat, S.; Porter, EK, Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order, Class. Quant. Grav., 32, 19, 195010 (2015) · Zbl 1327.83097 · doi:10.1088/0264-9381/32/19/195010
[94] Bohe, A., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev., D95, 4, 044028 (2017) · doi:10.1103/PhysRevD.95.044028
[95] Bose, S.; Chakravarti, K.; Rezzolla, L.; Sathyaprakash, BS; Takami, K., Neutron-star Radius from a Population of Binary Neutron Star Mergers, Phys. Rev. Lett., 120, 3, 031102 (2018) · doi:10.1103/PhysRevLett.120.031102
[96] Bovard, L.; Martin, D.; Guercilena, F.; Arcones, A.; Rezzolla, L.; Korobkin, O., \(r\)-process nucleosynthesis from matter ejected in binary neutron star mergers, Phys. Rev., D96, 12, 124005 (2017) · doi:10.1103/PhysRevD.96.124005
[97] Breschi, M.; Bernuzzi, S.; Zappa, F.; Agathos, M.; Perego, A.; Radice, D.; Nagar, A., Kilohertz gravitational waves from binary neutron star remnants: time-domain model and constraints on extreme matter, Phys. Rev., D100, 10, 104029 (2019) · doi:10.1103/PhysRevD.100.104029
[98] Breu, C.; Rezzolla, L., Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc., 459, 646-656 (2016) · doi:10.1093/mnras/stw575
[99] Brezin, E.; Itzykson, C.; Zinn-Justin, J., Relativistic Balmer formula including recoil effects, Phys. Rev., D1, 2349-2355 (1970) · doi:10.1103/PhysRevD.1.2349
[100] Brügmann, B.; Gonzalez, JA; Hannam, M.; Husa, S.; Sperhake, U.; Tichy, W., Calibration of Moving Puncture Simulations, Phys. Rev., D77, 024027 (2008) · doi:10.1103/PhysRevD.77.024027
[101] Buonanno, A.; Damour, T., Effective one-body approach to general relativistic two-body dynamics, Phys. Rev., D59, 084006 (1999) · doi:10.1103/PhysRevD.59.084006
[102] Buonanno, A.; Damour, T., Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev., D62, 064015 (2000) · doi:10.1103/PhysRevD.62.064015
[103] Buonanno, A.; Faye, G.; Hinderer, T., Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order, Phys. Rev., D87, 4, 044009 (2013) · doi:10.1103/PhysRevD.87.044009
[104] Buonanno, A.; Iyer, B.; Ochsner, E.; Pan, Y.; Sathyaprakash, B., Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Phys. Rev., D80, 084043 (2009) · doi:10.1103/PhysRevD.80.084043
[105] Buonanno, A., Sathyaprakash, B.S.: Sources of Gravitational Waves: Theory and Observations. In: A. Ashtekar, B. Berger, J. Isenberg, M. MacCallum (eds.), General Relativity and Gravitation: A Centennial Perspective, pp. 287-346. Cambridge University Press (2015). doi:10.1017/CBO9781139583961.009
[106] Camelio, G.; Dietrich, T.; Marques, M.; Rosswog, S., Rotating neutron stars with nonbarotropic thermal profile, Phys. Rev., D100, 12, 123001 (2019) · doi:10.1103/PhysRevD.100.123001
[107] Capano, CD; Tews, I.; Brown, SM; Margalit, B.; De, S.; Kumar, S.; Brown, DA; Krishnan, B.; Reddy, S., Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory, Nat Astron, 4, 625-632 (2020) · doi:10.1038/s41550-020-1014-6
[108] Cardoso, V.; Duque, F., Environmental effects in GW physics: tidal deformability of black holes immersed in matter, Phys. Rev., D101, 6, 064028 (2020) · doi:10.1103/PhysRevD.101.064028
[109] Cardoso, V., Franzin, E., Maselli, A., Pani, P., Raposo, G.: Testing strong-field gravity with tidal Love numbers. Phys. Rev. D95(8), 084014 (2017). doi:10.1103/PhysRevD.95.089901. doi:10.1103/PhysRevD.95.084014. [Addendum: Phys. Rev. D95, no.8,089901(2017)]
[110] Cardoso, V.; Gualtieri, L.; Moore, CJ, Gravitational waves and higher dimensions: Love numbers and Kaluza-Klein excitations, Phys. Rev., D100, 12, 124037 (2019) · doi:10.1103/PhysRevD.100.124037
[111] Carson, Z.; Chatziioannou, K.; Haster, CJ; Yagi, K.; Yunes, N., Equation-of-state insensitive relations after GW170817, Phys. Rev., D99, 8, 083016 (2019) · doi:10.1103/PhysRevD.99.083016
[112] Carson, Z.; Steiner, AW; Yagi, K., Constraining nuclear matter parameters with GW170817, Phys. Rev., D99, 4, 043010 (2019) · doi:10.1103/PhysRevD.99.043010
[113] Carson, Z.; Steiner, AW; Yagi, K., Future prospects for constraining nuclear matter parameters with gravitational waves, Phys. Rev., D100, 2, 023012 (2019) · doi:10.1103/PhysRevD.100.023012
[114] Carter, B., Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett., 26, 331-333 (1971) · doi:10.1103/PhysRevLett.26.331
[115] Chagoya, J.; Tasinato, G., Compact objects in scalar-tensor theories after GW170817, JCAP, 1808, 8, 006 (2018) · Zbl 1536.83094 · doi:10.1088/1475-7516/2018/08/006
[116] Chakrabarti, S.; Delsate, T.; Gürlebeck, N.; Steinhoff, J., I-Q relation for rapidly rotating neutron stars, Phys. Rev. Lett., 112, 20, 201102 (2014) · doi:10.1103/PhysRevLett.112.201102
[117] Chakrabarti, S.; Delsate, T.; Steinhoff, J., Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev., D88, 084038 (2013) · doi:10.1103/PhysRevD.88.084038
[118] Chakravarti, K.; Chakraborty, S.; Bose, S.; SenGupta, S., Tidal Love numbers of black holes and neutron stars in the presence of higher dimensions: implications of GW170817, Phys. Rev., D99, 2, 024036 (2019) · doi:10.1103/PhysRevD.99.024036
[119] Chan, TK; Chan, APO; Leung, PT, I-Love relations for incompressible stars and realistic stars, Phys. Rev., D91, 4, 044017 (2015) · doi:10.1103/PhysRevD.91.044017
[120] Chan, TK; Chan, APO; Leung, PT, Universality and stationarity of the I-Love relation for self-bound stars, Phys. Rev., D93, 2, 024033 (2016) · doi:10.1103/PhysRevD.93.024033
[121] Char, P.; Datta, S., Relativistic tidal properties of superfluid neutron stars, Phys. Rev., D98, 8, 084010 (2018) · doi:10.1103/PhysRevD.98.084010
[122] Chatziioannou, K.; Clark, JA; Bauswein, A.; Millhouse, M.; Littenberg, TB; Cornish, N., Inferring the post-merger gravitational wave emission from binary neutron star coalescences, Phys. Rev., D96, 12, 124035 (2017) · doi:10.1103/PhysRevD.96.124035
[123] Chatziioannou, K.; Haster, CJ; Zimmerman, A., Measuring the neutron star tidal deformability with equation-of-state-independent relations and gravitational waves, Phys. Rev., D97, 10, 104036 (2018) · doi:10.1103/PhysRevD.97.104036
[124] Chaurasia, SV; Dietrich, T.; Johnson-McDaniel, NK; Ujevic, M.; Tichy, W.; Brügmann, B., Gravitational waves and mass ejecta from binary neutron star mergers: effect of large eccentricities, Phys. Rev., D98, 10, 104005 (2018) · doi:10.1103/PhysRevD.98.104005
[125] Chaurasia, SV; Dietrich, T.; Ujevic, M.; Hendriks, K.; Dudi, R.; Fabbri, FM; Tichy, W.; Brügmann, B., Gravitational waves and mass ejecta from binary neutron star mergers: effect of the spin orientation, Phys. Rev., D102, 024087 (2020) · doi:10.1103/PhysRevD.102.024087
[126] Chen, A.; Johnson-McDaniel, NK; Dietrich, T.; Dudi, R., Distinguishing high-mass binary neutron stars from binary black holes with second- and third-generation gravitational wave observatories, Phys. Rev., D101, 103008 (2020) · doi:10.1103/PhysRevD.101.103008
[127] Chirenti, C.; Gold, R.; Miller, MC, Gravitational waves from f-modes excited by the inspiral of highly eccentric neutron star binaries, Astrophys. J., 837, 1, 67 (2017) · doi:10.3847/1538-4357/aa5ebb
[128] Chirenti, C.; de Souza, GH; Kastaun, W., Fundamental oscillation modes of neutron stars: validity of universal relations, Phys. Rev., D91, 4, 044034 (2015) · doi:10.1103/PhysRevD.91.044034
[129] Christian, JE; Zacchi, A.; Schaffner-Bielich, J., Signals in the tidal deformability for phase transitions in compact stars with constraints from GW170817, Phys. Rev., D99, 2, 023009 (2019) · doi:10.1103/PhysRevD.99.023009
[130] Ciolfi, R.; Kastaun, W.; Giacomazzo, B.; Endrizzi, A.; Siegel, DM; Perna, R., General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star, Phys. Rev., D95, 6, 063016 (2017) · doi:10.1103/PhysRevD.95.063016
[131] Ciolfi, R.; Kastaun, W.; Kalinani, JV; Giacomazzo, B., First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger, Phys. Rev., D100, 2, 023005 (2019) · doi:10.1103/PhysRevD.100.023005
[132] Clark, J.; Bauswein, A.; Cadonati, L.; Janka, HT; Pankow, C., Prospects for high frequency burst searches following binary neutron star coalescence with advanced gravitational wave detectors, Phys. Rev., D90, 6, 062004 (2014) · doi:10.1103/PhysRevD.90.062004
[133] Clark, JA; Bauswein, A.; Stergioulas, N.; Shoemaker, D., Observing gravitational waves from the post-merger phase of binary neutron star coalescence, Class. Quantum Grav., 33, 085003 (2016) · doi:10.1088/0264-9381/33/8/085003
[134] Cotesta, R.; Buonanno, A.; Bohé, A.; Taracchini, A.; Hinder, I.; Ossokine, S., Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics, Phys. Rev., D98, 084028 (2018) · doi:10.1103/PhysRevD.98.084028
[135] Coughlin, MW; Dietrich, T.; Antier, S.; Bulla, M.; Foucart, F.; Hotokezaka, K.; Raaijmakers, G.; Hinderer, T.; Nissanke, S., Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties, Mon. Not. R. Astron. Soc., 492, 1, 863-876 (2020) · doi:10.1093/mnras/stz3457
[136] Coughlin, MW; Dietrich, T.; Doctor, Z.; Kasen, D.; Coughlin, S.; Jerkstrand, A.; Leloudas, G.; McBrien, O.; Metzger, BD; O’Shaughnessy, R.; Smartt, SJ, Constraints on the neutron star equation of state from at2017gfo using radiative transfer simulations, Mon. Not. R. Astron. Soc., 480, 3, 3871-3878 (2018) · doi:10.1093/mnras/sty2174
[137] Coughlin, MW; Dietrich, T.; Heinzel, J.; Khetan, N.; Antier, S.; Christensen, N.; Coulter, DA; Foley, RJ, Standardizing kilonovae and their use as standard candles to measure the Hubble constant, Phys. Rev. Research, 2, 022006 (2020) · doi:10.1103/PhysRevResearch.2.022006
[138] Coughlin, MW; Dietrich, T.; Margalit, B.; Metzger, BD, Multi-messenger Bayesian parameter inference of a binary neutron-star merger, Mon. Not. R. Astron. Soc. Lett., 489, 1, L91-L96 (2019) · doi:10.1093/mnrasl/slz133
[139] Cowperthwaite, P.S., et al.: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to Kilonova models. Astrophys. J. 848(2), L17 (2017). doi:10.3847/2041-8213/aa8fc7
[140] Creminelli, P.; Vernizzi, F., Dark energy after GW170817 and GRB170817A, Phys. Rev. Lett., 119, 25, 251302 (2017) · doi:10.1103/PhysRevLett.119.251302
[141] Cutler, C.; Flanagan, EE, Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form?, Phys. Rev., D49, 2658-2697 (1994) · doi:10.1103/PhysRevD.49.2658
[142] Dai, L., Venumadhav, T., Zackay, B.: Parameter estimation for GW170817 using relative binning (2018). arXiv:1806.08793
[143] Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D64, 124013 (2001). doi:10.1103/PhysRevD.64.124013
[144] Damour, T.: The general relativistic two body problem and the effective one body formalism. In: Biĉák J., Ledvinka T. (eds.) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol. 177, pp 111-145. Springer, Cham. doi:10.1007/978-3-319-06349-2_5. doi:10.1007/978-3-319-06349-2_5 · Zbl 1328.83006
[145] Damour, T., Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev., D94, 10, 104015 (2016) · doi:10.1103/PhysRevD.94.104015
[146] Damour, T., High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev., D97, 4, 044038 (2018) · doi:10.1103/PhysRevD.97.044038
[147] Damour, T., Iyer, B.R.: Post-Newtonian generation of gravitational waves. 2. The spin moments. Ann. Inst. H. Poincare Phys. Theor. 54, 115-164 (1991). http://www.numdam.org/item/AIHPA_1991_54_2_115_0 · Zbl 0746.53056
[148] Damour, T.; Iyer, BR; Jaranowski, P.; Sathyaprakash, BS, Gravitational waves from black hole binary inspiral and merger: the span of third post-Newtonian effective one-body templates, Phys. Rev., D67, 064028 (2003) · doi:10.1103/PhysRevD.67.064028
[149] Damour, T.; Iyer, BR; Nagar, A., Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries, Phys. Rev., D79, 064004 (2009) · doi:10.1103/PhysRevD.79.064004
[150] Damour, T.; Jaranowski, P.; Schäfer, G., Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling, Phys. Rev., D78, 024009 (2008) · doi:10.1103/PhysRevD.78.024009
[151] Damour, T.; Jaranowski, P.; Schäfer, G., Conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity, Phys. Rev., D93, 8, 084014 (2016) · doi:10.1103/PhysRevD.93.084014
[152] Damour, T.; Jaranowski, P.; Schäfer, G., Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev., D89, 6, 064058 (2014) · doi:10.1103/PhysRevD.89.064058
[153] Damour, T.; Nagar, A., Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries, Phys. Rev., D76, 064028 (2007) · doi:10.1103/PhysRevD.76.064028
[154] Damour, T.; Nagar, A., An improved analytical description of inspiralling and coalescing black-hole binaries, Phys. Rev., D79, 081503 (2009) · doi:10.1103/PhysRevD.79.081503
[155] Damour, T.; Nagar, A., Relativistic tidal properties of neutron stars, Phys. Rev., D80, 084035 (2009) · doi:10.1103/PhysRevD.80.084035
[156] Damour, T.; Nagar, A., Effective One Body description of tidal effects in inspiralling compact binaries, Phys. Rev., D81, 084016 (2010) · doi:10.1103/PhysRevD.81.084016
[157] Damour, T., Nagar, A.: The effective one body description of the two-body problem. In: Blanchet L., Spallicci A., Whiting B. (eds.) Mass and Motion in General Relativity. Fundamental Theories of Physics, vol. 162, pp. 211-252. Springer, Dordrecht. doi:10.1007/978-90-481-3015-3_7 · Zbl 1213.83036
[158] Damour, T.; Nagar, A., A new analytic representation of the ringdown waveform of coalescing spinning black hole binaries, Phys. Rev., D90, 024054 (2014) · doi:10.1103/PhysRevD.90.024054
[159] Damour, T.; Nagar, A., New effective-one-body description of coalescing nonprecessing spinning black-hole binaries, Phys. Rev., D90, 4, 044018 (2014) · doi:10.1103/PhysRevD.90.044018
[160] Damour, T., Nagar, A.: The effective-one-body approach to the general relativistic two body problem. In: Haardt F., Gorini V., Moschella U., Treves A., Colpi M. (eds.) Astrophysical Black Holes. Lecture Notes in Physics, vol 905, pp. 273-312. Springer, Cham. doi:10.1007/978-3-319-19416-5_7 · Zbl 1213.83036
[161] Damour, T.; Nagar, A.; Bernuzzi, S., Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion, Phys. Rev., D87, 084035 (2013) · doi:10.1103/PhysRevD.87.084035
[162] Damour, T.; Nagar, A.; Dorband, EN; Pollney, D.; Rezzolla, L., Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries, Phys. Rev., D77, 084017 (2008) · doi:10.1103/PhysRevD.77.084017
[163] Damour, T.; Nagar, A.; Hannam, M.; Husa, S.; Brügmann, B., Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries, Phys. Rev., D78, 044039 (2008) · doi:10.1103/PhysRevD.78.044039
[164] Damour, T.; Nagar, A.; Villain, L., Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals, Phys. Rev., D85, 123007 (2012) · doi:10.1103/PhysRevD.85.123007
[165] Damour, T., Soffel, M., Xu, C.M.: General relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev. D45, 1017-1044 (1992). doi:10.1103/PhysRevD.45.1017
[166] Das, A.; Malik, T.; Nayak, AC, Confronting nuclear equation of state in the presence of dark matter using GW170817 observation in relativistic mean field theory approach, Phys. Rev., D99, 4, 043016 (2019) · doi:10.1103/PhysRevD.99.043016
[167] Datta, S.; Char, P., Effect of superfluid matter of a neutron star on the tidal deformability, Phys. Rev., D101, 6, 064016 (2020) · doi:10.1103/PhysRevD.101.064016
[168] De, S., Finstad, D., Lattimer, J.M., Brown, D.A., Berger, E., Biwer, C.M.: Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 121(9), 091102 (2018). doi:10.1103/PhysRevLett.121.259902. [Erratum: Phys. Rev. Lett. 121(25), 259902 (2018)]
[169] De Pietri, R.; Feo, A.; Font, JA; Löffler, F.; Maione, F.; Pasquali, M.; Stergioulas, N., Convective excitation of inertial modes in binary neutron star mergers, Phys. Rev. Lett., 120, 22, 221101 (2018) · doi:10.1103/PhysRevLett.120.221101
[170] Del Pozzo, W.; Li, TGF; Agathos, M.; Van Den Broeck, C.; Vitale, S., Demonstrating the feasibility of probing the neutron star equation of state with second-generation gravitational wave detectors, Phys. Rev. Lett., 111, 7, 071101 (2013) · doi:10.1103/PhysRevLett.111.071101
[171] Detweiler, S.; Lindblom, L., On the nonradial pulsations of general relativistic stellar models, Astrophys. J., 292, 12-15 (1985) · doi:10.1086/163127
[172] Dhawan, S., Bulla, M., Goobar, A., Carracedo, A.S., Setzer, C.N.: Constraining the observer angle of the kilonova AT2017gfo associated with GW170817: implications for the Hubble constant (2019). doi:10.3847/1538-4357/ab5799
[173] Dietrich, T., Bernuzzi, S., Brügmann, B., Tichy, W.: High-resolution numerical relativity simulations of spinning binary neutron star mergers. In: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP 2018), pp. 682-689 (2018). doi:10.1109/PDP2018.2018.00113
[174] Dietrich, T.; Bernuzzi, S.; Brügmann, B.; Ujevic, M.; Tichy, W., Numerical relativity simulations of precessing binary neutron star mergers, Phys. Rev., D97, 6, 064002 (2018) · doi:10.1103/PhysRevD.97.064002
[175] Dietrich, T.; Bernuzzi, S.; Tichy, W., Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations, Phys. Rev., D96, 12, 121501 (2017) · doi:10.1103/PhysRevD.96.121501
[176] Dietrich, T.; Bernuzzi, S.; Ujevic, M.; Brügmann, B., Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement, Phys. Rev., D91, 12, 124041 (2015) · doi:10.1103/PhysRevD.91.124041
[177] Dietrich, T.; Bernuzzi, S.; Ujevic, M.; Tichy, W., Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the stars’ rotation, Phys. Rev., D95, 4, 044045 (2017) · doi:10.1103/PhysRevD.95.044045
[178] Dietrich, T., Coughlin, M.W., Pang, P.T.H., Bulla, M., Heinzel, J., Issa, L., Tews, I., Antier, S.: New constraints on the supranuclear equation of state and the Hubble constant from nuclear physics—multi-messenger astronomy arXiv e-prints arXiv:2002.11355 (2020)
[179] Dietrich, T.; Hinderer, T., Comprehensive comparison of numerical relativity and effective-one-body results to inform improvements in waveform models for binary neutron star systems, Phys. Rev., D95, 12, 124006 (2017) · doi:10.1103/PhysRevD.95.124006
[180] Dietrich, T.; Moldenhauer, N.; Johnson-McDaniel, NK; Bernuzzi, S.; Markakis, CM; Brügmann, B.; Tichy, W., Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: quasi-equilibrium sequences and first evolutions, Phys. Rev., D92, 12, 124007 (2015) · doi:10.1103/PhysRevD.92.124007
[181] Dietrich, T., Radice, D., Bernuzzi, S., Zappa, F., Perego, A., Brügmann, B., Chaurasia, S.V., Dudi, R., Tichy, W., Ujevic, M.: CoRe database of binary neutron star merger waveforms. Class. Quant. Grav. 35(24), 24LT01 (2018). doi:10.1088/1361-6382/aaebc0
[182] Dietrich, T.; Samajdar, A.; Khan, S.; Johnson-McDaniel, NK; Dudi, R.; Tichy, W., Improving the NRTidal model for binary neutron star systems, Phys. Rev., D100, 044003 (2019) · doi:10.1103/PhysRevD.100.044003
[183] Dietrich, T.; Ujevic, M.; Tichy, W.; Bernuzzi, S.; Brügmann, B., Gravitational waves and mass ejecta from binary neutron star mergers: effect of the mass-ratio, Phys. Rev., D95, 2, 024029 (2017) · doi:10.1103/PhysRevD.95.024029
[184] Dietrich, T., Matter imprints in waveform models for neutron star binaries: tidal and self-spin effects, Phys. Rev., D99, 2, 024029 (2019) · doi:10.1103/PhysRevD.99.024029
[185] Dixon, W.G.: Dynamics of extended bodies in general relativity. I. Momentum and angular momentum. Proc. R. Soc. Lond. A314, 499-527 (1970). doi:10.1098/rspa.1970.0020
[186] Dolan, SR; Nolan, P.; Ottewill, AC; Warburton, N.; Wardell, B., Tidal invariants for compact binaries on quasicircular orbits, Phys. Rev., D91, 2, 023009 (2015) · doi:10.1103/PhysRevD.91.023009
[187] Dominik, M.; Belczynski, K.; Fryer, C.; Holz, D.; Berti, E.; Bulik, T.; Mandel, I.; O’Shaughnessy, R., Double compact objects I: the significance of the common envelope on merger rates, Astrophys. J., 759, 52 (2012) · doi:10.1088/0004-637X/759/1/52
[188] Doneva, DD; Gaertig, E.; Kokkotas, KD; Krüger, C., Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state, Phys. Rev., D88, 4, 044052 (2013) · doi:10.1103/PhysRevD.88.044052
[189] Doneva, DD; Pappas, G., Universal relations and alternative gravity theories, Astrophys. Space Sci. Libr., 457, 737-806 (2018) · doi:10.1007/978-3-319-97616-7_13
[190] Dudi, R., Pannarale, F., Dietrich, T., Hannam, M., Bernuzzi, S., Ohme, F., Brügmann, B.: Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation (2018). arXiv:1808.09749
[191] East, WE; Paschalidis, V.; Pretorius, F., Equation of state effects and one-arm spiral instability in hypermassive neutron stars formed in eccentric neutron star mergers, Class. Quant. Grav., 33, 24, 244004 (2016) · doi:10.1088/0264-9381/33/24/244004
[192] East, WE; Paschalidis, V.; Pretorius, F.; Shapiro, SL, Relativistic simulations of eccentric binary neutron star mergers: one-arm spiral instability and effects of neutron star spin, Phys. Rev., D93, 2, 024011 (2016) · doi:10.1103/PhysRevD.93.024011
[193] East, WE; Paschalidis, V.; Pretorius, F.; Tsokaros, A., Binary neutron star mergers: effects of spin and post-merger dynamics, Phys. Rev., D100, 124042 (2019) · doi:10.1103/PhysRevD.100.124042
[194] East, WE; Pretorius, F., Dynamical capture binary neutron star mergers, Astrophys. J., 760, L4 (2012) · doi:10.1088/2041-8205/760/1/L4
[195] Eichler, D.; Livio, M.; Piran, T.; Schramm, DN, Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars, Nature, 340, 126-128 (1989) · doi:10.1038/340126a0
[196] Ellis, J.; Huetsi, G.; Kannike, K.; Marzola, L.; Raidal, M.; Vaskonen, V., Dark matter effects on neutron star properties, Phys. Rev., D97, 12, 123007 (2018) · doi:10.1103/PhysRevD.97.123007
[197] Emparan, R.; Fernandez-Pique, A.; Luna, R., Geometric polarization of plasmas and Love numbers of AdS black branes, JHEP, 09, 150 (2017) · Zbl 1382.81157 · doi:10.1007/JHEP09(2017)150
[198] Endlich, S.; Penco, R., Effective field theory approach to tidal dynamics of spinning astrophysical systems, Phys. Rev., D93, 6, 064021 (2016) · doi:10.1103/PhysRevD.93.064021
[199] Epstein, R.; Wagoner, RV, Post-Newtonian generation of gravitational waves, Astrophys. J., 197, 717-723 (1975) · doi:10.1086/153561
[200] Essick, R.; Vitale, S.; Weinberg, NN, Impact of the tidal p-g instability on the gravitational wave signal from coalescing binary neutron stars, Phys. Rev., D94, 10, 103012 (2016) · doi:10.1103/PhysRevD.94.103012
[201] Ezquiaga, JM; Zumalacárregui, M., Dark energy after GW170817: dead ends and the road ahead, Phys. Rev. Lett., 119, 25, 251304 (2017) · doi:10.1103/PhysRevLett.119.251304
[202] Faber, J.A., Rasio, F.A.: Binary Neutron Star Mergers. Living Rev. Relativ. 15, 8 (2012). doi:10.12942/lrr-2012-8
[203] Fang, H.; Lovelace, G., Tidal coupling of a Schwarzschild black hole and circularly orbiting moon, Phys. Rev., D72, 124016 (2005) · doi:10.1103/PhysRevD.72.124016
[204] Fasano, M.; Abdelsalhin, T.; Maselli, A.; Ferrari, V., Constraining the neutron star equation of state using multiband independent measurements of radii and tidal deformabilities, Phys. Rev. Lett., 123, 14, 141101 (2019) · doi:10.1103/PhysRevLett.123.141101
[205] Fattoyev, FJ; Carvajal, J.; Newton, WG; Li, BA, Constraining the high-density behavior of the nuclear symmetry energy with the tidal polarizability of neutron stars, Phys. Rev., C87, 1, 015806 (2013) · doi:10.1103/PhysRevC.87.015806
[206] Fattoyev, FJ; Newton, WG; Li, BA, Probing the high-density behavior of symmetry energy with gravitational waves, Eur. Phys. J., A50, 45 (2014) · doi:10.1140/epja/i2014-14045-6
[207] Fattoyev, FJ; Piekarewicz, J.; Horowitz, CJ, Neutron skins and neutron stars in the multimessenger era, Phys. Rev. Lett., 120, 17, 172702 (2018) · doi:10.1103/PhysRevLett.120.172702
[208] Favata, M., Are neutron stars crushed? gravitomagnetic tidal fields as a mechanism for binary-induced collapse, Phys. Rev., D73, 104005 (2006) · doi:10.1103/PhysRevD.73.104005
[209] Favata, M., Systematic parameter errors in inspiraling neutron star binaries, Phys. Rev. Lett., 112, 101101 (2014) · doi:10.1103/PhysRevLett.112.101101
[210] Ferrari, V.; Gualtieri, L., Quasi-normal modes and gravitational wave astronomy, Gen. Relativ. Gravit., 40, 945-970 (2008) · Zbl 1140.83340 · doi:10.1007/s10714-007-0585-1
[211] Ferrari, V.; Gualtieri, L.; Maselli, A., Tidal interaction in compact binaries: a post-Newtonian affine framework, Phys. Rev., D85, 044045 (2012) · doi:10.1103/PhysRevD.85.044045
[212] Ferrari, V.; Gualtieri, L.; Pannarale, F., Neutron star tidal disruption in mixed binaries: the imprint of the equation of state, Phys. Rev., D81, 064026 (2010) · doi:10.1103/PhysRevD.81.064026
[213] Ferreira, M.; Fortin, M.; Malik, T.; Agrawal, BK; Providencia, C., Empirical constraints on the high-density equation of state from multimessenger observables, Phys. Rev., D101, 4, 043021 (2020) · doi:10.1103/PhysRevD.101.043021
[214] Flanagan, EE, General relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars, Phys. Rev., D58, 124030 (1998) · doi:10.1103/PhysRevD.58.124030
[215] Flanagan, EE; Hinderer, T., Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev., D77, 021502 (2008) · doi:10.1103/PhysRevD.77.021502
[216] Flanagan, EE; Racine, E., Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries, Phys. Rev., D75, 044001 (2007) · doi:10.1103/PhysRevD.75.044001
[217] Foffa, S.; Mastrolia, P.; Sturani, R.; Sturm, C., Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant, Phys. Rev., D95, 10, 104009 (2017) · doi:10.1103/PhysRevD.95.104009
[218] Foffa, S.; Porto, RA; Rothstein, I.; Sturani, R., Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: Renormalized Lagrangian, Phys. Rev., D100, 2, 024048 (2019) · doi:10.1103/PhysRevD.100.024048
[219] Foffa, S.; Sturani, R., Tail terms in gravitational radiation reaction via effective field theory, Phys. Rev., D87, 4, 044056 (2013) · doi:10.1103/PhysRevD.87.044056
[220] Foffa, S.; Sturani, R., Effective field theory methods to model compact binaries, Class. Quant. Grav., 31, 4, 043001 (2014) · Zbl 1286.83034 · doi:10.1088/0264-9381/31/4/043001
[221] Foley, R.J., Coulter, D.A., Kilpatrick, C.D., Piro, A.L., Ramirez-Ruiz, E., Schwab, J.: Updated parameter estimates for GW190425 using astrophysical arguments and implications for the electromagnetic counterpart (2020). doi:10.1093/mnras/staa725
[222] Font, J.A.: Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11, 7 (2007). doi:10.12942/lrr-2008-7 · Zbl 1166.83003
[223] Forbes, MM; Bose, S.; Reddy, S.; Zhou, D.; Mukherjee, A.; De, S., Constraining the neutron-matter equation of state with gravitational waves, Phys. Rev., D100, 8, 083010 (2019) · doi:10.1103/PhysRevD.100.083010
[224] Foucart, F., Monte-Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamics simulations, Mon. Not. R. Astron. Soc., 475, 3, 4186-4207 (2018) · doi:10.1093/mnras/sty108
[225] Foucart, F.; Deaton, MB; Duez, MD; O’Connor, E.; Ott, CD; Haas, R.; Kidder, LE; Pfeiffer, HP; Scheel, MA; Szilagyi, B., Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: dependence in the binary parameters, Phys. Rev., D90, 2, 024026 (2014) · doi:10.1103/PhysRevD.90.024026
[226] Foucart, F.; Haas, R.; Duez, MD; O’Connor, E.; Ott, CD; Roberts, L.; Kidder, LE; Lippuner, J.; Pfeiffer, HP; Scheel, MA, Low mass binary neutron star mergers: gravitational waves and neutrino emission, Phys. Rev., D93, 4, 044019 (2016) · doi:10.1103/PhysRevD.93.044019
[227] Foucart, F.; Kidder, LE; Pfeiffer, HP; Teukolsky, SA, Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method, Phys. Rev., D77, 124051 (2008) · doi:10.1103/PhysRevD.77.124051
[228] Foucart, F.; O’Connor, E.; Roberts, L.; Duez, MD; Haas, R.; Kidder, LE; Ott, CD; Pfeiffer, HP; Scheel, MA; Szilagyi, B., Post-merger evolution of a neutron star-black hole binary with neutrino transport, Phys. Rev., D91, 12, 124021 (2015) · doi:10.1103/PhysRevD.91.124021
[229] Foucart, F.; O’Connor, E.; Roberts, L.; Kidder, LE; Pfeiffer, HP; Scheel, MA, Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations, Phys. Rev., D94, 12, 123016 (2016) · doi:10.1103/PhysRevD.94.123016
[230] Foucart, F., Gravitational waveforms from spectral Einstein code simulations: neutron star-neutron star and low-mass black hole-neutron star binaries, Phys. Rev., D99, 4, 044008 (2019) · doi:10.1103/PhysRevD.99.044008
[231] Fujibayashi, S.; Kiuchi, K.; Nishimura, N.; Sekiguchi, Y.; Shibata, M., Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study, Astrophys. J., 860, 1, 64 (2018) · doi:10.3847/1538-4357/aabafd
[232] Fujibayashi, S.; Sekiguchi, Y.; Kiuchi, K.; Shibata, M., Properties of neutrino-driven ejecta from the remnant of a binary neutron star merger: pure radiation hydrodynamics case, Astrophys. J., 846, 2, 114 (2017) · doi:10.3847/1538-4357/aa8039
[233] Futamase, T., Itoh, Y.: The post-Newtonian approximation for relativistic compact binaries. Living Rev. Relativ. 10, 2 (2007). doi:10.12942/lrr-2007-2 · Zbl 1255.83005
[234] Gagnon-Bischoff, J.; Green, SR; Landry, P.; Ortiz, N., Extended I-Love relations for slowly rotating neutron stars, Phys. Rev., D97, 6, 064042 (2018) · doi:10.1103/PhysRevD.97.064042
[235] Galeazzi, F.; Kastaun, W.; Rezzolla, L.; Font, JA, Implementation of a simplified approach to radiative transfer in general relativity, Phys. Rev., D88, 064009 (2013) · doi:10.1103/PhysRevD.88.064009
[236] Galley, C.R., Leibovich, A.K.: Radiation reaction at 3.5 post-Newtonian order in effective field theory. Phys. Rev. D86, 044029 (2012). doi:10.1103/PhysRevD.86.044029
[237] Galley, CR; Leibovich, AK; Porto, RA; Ross, A., Tail effect in gravitational radiation reaction: time nonlocality and renormalization group evolution, Phys. Rev., D93, 124010 (2016) · doi:10.1103/PhysRevD.93.124010
[238] Galley, CR; Tiglio, M., Radiation reaction and gravitational waves in the effective field theory approach, Phys. Rev., D79, 124027 (2009) · doi:10.1103/PhysRevD.79.124027
[239] Gamba, R.; Read, JS; Wade, LE, The impact of the crust equation of state on the analysis of GW170817, Class. Quant. Grav., 37, 2, 025008 (2020) · doi:10.1088/1361-6382/ab5ba4
[240] Giacomazzo, B.; Rezzolla, L.; Baiotti, L., Accurate evolutions of inspiralling and magnetized neutron-stars: equal-mass binaries, Phys. Rev., D83, 044014 (2011) · doi:10.1103/PhysRevD.83.044014
[241] Giddings, SB; Koren, S.; Trevino, G., Exploring strong-field deviations from general relativity via gravitational waves, Phys. Rev., D100, 4, 044005 (2019) · doi:10.1103/PhysRevD.100.044005
[242] Gold, R.; Bernuzzi, S.; Thierfelder, M.; Brügmann, B.; Pretorius, F., Eccentric binary neutron star mergers, Phys. Rev., D86, 121501 (2012) · doi:10.1103/PhysRevD.86.121501
[243] Goldberger, W.D.: Les Houches lectures on effective field theories and gravitational radiation. In: Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31-August 25, 2006 (2007)
[244] Goldberger, WD; Ross, A., Gravitational radiative corrections from effective field theory, Phys. Rev., D81, 124015 (2010) · doi:10.1103/PhysRevD.81.124015
[245] Goldberger, WD; Rothstein, IZ, An effective field theory of gravity for extended objects, Phys. Rev., D73, 104029 (2006) · doi:10.1103/PhysRevD.73.104029
[246] Gomes, RO; Char, P.; Schramm, S., Constraining strangeness in dense matter with GW170817, Astrophys. J., 877, 2, 139 (2019) · doi:10.3847/1538-4357/ab1751
[247] Gralla, SE, On the ambiguity in relativistic tidal deformability, Class. Quant. Grav., 35, 8, 085002 (2018) · Zbl 1409.83044 · doi:10.1088/1361-6382/aab186
[248] Gürlebeck, N., No-hair theorem for black holes in astrophysical environments, Phys. Rev. Lett., 114, 15, 151102 (2015) · doi:10.1103/PhysRevLett.114.151102
[249] Guerra Chaves, A.; Hinderer, T., Probing the equation of state of neutron star matter with gravitational waves from binary inspirals in light of GW170817: a brief review, J. Phys., G46, 12, 123002 (2019) · doi:10.1088/1361-6471/ab45be
[250] Gürsel, Y., Multipole moments for stationary systems: the equivalence of the Geroch-Hansen formulation and the Thorne formulation, Gen. Relativ. Gravit., 15, 737-754 (1983) · Zbl 0516.53033 · doi:10.1007/BF01031881
[251] Gupta, T.; Majumder, B.; Yagi, K.; Yunes, N., I-Love-Q relations for neutron stars in dynamical Chern Simons gravity, Class. Quant. Grav., 35, 2, 025009 (2018) · Zbl 1383.83115 · doi:10.1088/1361-6382/aa9c68
[252] Haas, R., Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code, Phys. Rev., D93, 12, 124062 (2016) · doi:10.1103/PhysRevD.93.124062
[253] Han, MZ; Tang, SP; Hu, YM; Li, YJ; Jiang, JL; Jin, ZP; Fan, YZ; Wei, DM, Is GW190425 consistent with being a neutron star-black hole merger?, Astrophys. J., 891, 1, L5 (2020) · doi:10.3847/2041-8213/ab745a
[254] Han, S.; Steiner, AW, Tidal deformability with sharp phase transitions in (binary) neutron stars, Phys. Rev., D99, 8, 083014 (2019) · doi:10.1103/PhysRevD.99.083014
[255] Handmer, CJ; Szilágyi, B.; Winicour, J., Spectral Cauchy Characteristic Extraction of strain, news and gravitational radiation flux, Class. Quant. Grav., 33, 22, 225007 (2016) · Zbl 1351.83007 · doi:10.1088/0264-9381/33/22/225007
[256] Hansen, D., Dynamical evolution and leading order gravitational wave emission of Riemann-S binaries, Gen. Relativ. Gravit., 38, 1173-1208 (2006) · Zbl 1101.83019 · doi:10.1007/s10714-006-0311-4
[257] Harry, I.; Hinderer, T., Observing and measuring the neutron-star equation-of-state in spinning binary neutron star systems, Class. Quant. Grav., 35, 14, 145010 (2018) · doi:10.1088/1361-6382/aac7e3
[258] Hartle, J.B.: Slowly rotating relativistic stars. 1. Equations of structure. Astrophys. J. 150, 1005-1029 (1967). doi:10.1086/149400
[259] Hartmann, T.; Soffel, MH; Kioustelidis, T., On the use of STF-tensors in celestial mechanics, Celest. Mech. Dyn. Astron., 60, 139-159 (1994) · Zbl 0818.70014 · doi:10.1007/BF00693097
[260] Haskell, B.; Ciolfi, R.; Pannarale, F.; Rezzolla, L., On the universality of I-Love-Q relations in magnetized neutron stars, Mon. Not. R. Astron. Soc. Lett., 438, L71-L75 (2014) · doi:10.1093/mnrasl/slt161
[261] Hawking, SW, Black holes in general relativity, Commun. Math. Phys., 25, 152-166 (1972) · doi:10.1007/BF01877517
[262] Healy, J.; Lousto, CO; Zlochower, Y., Nonspinning binary black hole merger scenario revisited, Phys. Rev., D96, 2, 024031 (2017) · doi:10.1103/PhysRevD.96.024031
[263] Henry, Q.; Faye, G.; Blanchet, L., Tidal effects in the equations of motion of compact binary systems to next-to-next-to-leading post-Newtonian order, Phys. Rev., D101, 6, 064047 (2020) · doi:10.1103/PhysRevD.101.064047
[264] Hessels, JWT; Ransom, SM; Stairs, IH; Freire, PCC; Kaspi, VM; Camilo, F., A radio pulsar spinning at 716 Hz, Science, 311, 1901-1904 (2006) · doi:10.1126/science.1123430
[265] Hild, S., Chelkowski, S., Freise, A.: Pushing towards the ET sensitivity using ‘conventional’ technology arXiv e-prints arXiv:0810.0604
[266] Hinderer, T., Tidal Love numbers of neutron stars, Astrophys. J., 677, 1216-1220 (2008) · doi:10.1086/533487
[267] Hinderer, T.; Lackey, BD; Lang, RN; Read, JS, Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral, Phys. Rev., D81, 123016 (2010) · doi:10.1103/PhysRevD.81.123016
[268] Hinderer, T., Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one-body approach, Phys. Rev. Lett., 116, 18, 181101 (2016) · doi:10.1103/PhysRevLett.116.181101
[269] Ho, WCG; Lai, D., Resonant tidal excitations of rotating neutron stars in coalescing binaries, Mon. Not. R. Astron. Soc., 308, 153 (1999) · doi:10.1046/j.1365-8711.1999.02703.x
[270] Hornick, N.; Tolos, L.; Zacchi, A.; Christian, JE; Schaffner-Bielich, J., Relativistic parameterizations of neutron matter and implications for neutron stars, Phys. Rev., C98, 6, 065804 (2018) · doi:10.1103/PhysRevC.98.065804
[271] Hotokezaka, K.; Beniamini, P.; Piran, T., Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts, Int. J. Mod. Phys., D27, 13, 1842005 (2018) · doi:10.1142/S0218271818420051
[272] Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Muranushi, T.; Sekiguchi, YI, Remnant massive neutron stars of binary neutron star mergers: evolution process and gravitational waveform, Phys. Rev., D88, 4, 044026 (2013) · doi:10.1103/PhysRevD.88.044026
[273] Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Okawa, H.; Sekiguchi, YI, The mass ejection from the merger of binary neutron stars, Phys. Rev., D87, 024001 (2013) · doi:10.1103/PhysRevD.87.024001
[274] Hotokezaka, K.; Kyutoku, K.; Okawa, H.; Shibata, M., Exploring tidal effects of coalescing binary neutron stars in numerical relativity, II. Long-term simulations. Phys. Rev., D91, 6, 064060 (2015) · doi:10.1103/PhysRevD.91.064060
[275] Hotokezaka, K.; Kyutoku, K.; Okawa, H.; Shibata, M.; Kiuchi, K., Binary neutron star mergers: dependence on the nuclear equation of state, Phys. Rev., D83, 124008 (2011) · doi:10.1103/PhysRevD.83.124008
[276] Hotokezaka, K.; Kyutoku, K.; Sekiguchi, YI; Shibata, M., Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars, Phys. Rev., D93, 6, 064082 (2016) · doi:10.1103/PhysRevD.93.064082
[277] Hotokezaka, K.; Kyutoku, K.; Shibata, M., Exploring tidal effects of coalescing binary neutron stars in numerical relativity, Phys. Rev., D87, 4, 044001 (2013) · doi:10.1103/PhysRevD.87.044001
[278] Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, KP; Deller, A., A Hubble constant measurement from superluminal motion of the jet in GW170817, Nat. Astron. (2019) · doi:10.1038/s41550-019-0820-1
[279] Ipser, JR; Price, RH, Nonradial pulsations of stellar models in general relativity, Phys. Rev., D43, 1768-1773 (1991) · doi:10.1103/PhysRevD.43.1768
[280] Isoyama, S.; Nakano, H., Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins, Class. Quant. Grav., 35, 2, 024001 (2018) · Zbl 1383.83064 · doi:10.1088/1361-6382/aa96c5
[281] Itoh, Y.; Futamase, T.; Asada, H., Equation of motion for relativistic compact binaries with the strong field point particle limit: formulation, the first post-Newtonian and multipole terms, Phys. Rev., D62, 064002 (2000) · doi:10.1103/PhysRevD.62.064002
[282] Ji, F.; Hu, J.; Bao, S.; Shen, H., Effects of nuclear symmetry energy and equation of state on neutron star properties, Phys. Rev., C100, 4, 045801 (2019) · doi:10.1103/PhysRevC.100.045801
[283] Jimenez Forteza, X.; Abdelsalhin, T.; Pani, P.; Gualtieri, L., Impact of high-order tidal terms on binary neutron-star waveforms, Phys. Rev., D98, 12, 124014 (2018) · doi:10.1103/PhysRevD.98.124014
[284] Kaplan, J.; Ott, C.; O’Connor, E.; Kiuchi, K.; Roberts, L., The influence of thermal pressure on equilibrium models of hypermassive neutron star merger remnants, Astrophys. J., 790, 19 (2014) · doi:10.1088/0004-637X/790/1/19
[285] Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E., Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event, Nature, 551, 80 (2017) · doi:10.1038/nature24453
[286] Kasliwal, MM, Illuminating gravitational waves: a concordant picture of photons from a neutron star merger, Science, 358, 6370, 1559-1565 (2017) · doi:10.1126/science.aap9455
[287] Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B., Structure of stable binary neutron star merger remnants: role of initial spin, Phys. Rev., D96, 4, 043019 (2017) · doi:10.1103/PhysRevD.96.043019
[288] Kastaun, W.; Galeazzi, F.; Alic, D.; Rezzolla, L.; Font, JA, On the black hole from merging binary neutron stars: how fast can it spin?, Phys. Rev., D88, 021501 (2013) · doi:10.1103/PhysRevD.88.021501
[289] Kastaun, W.; Ohme, F., Finite tidal effects in GW170817: observational evidence or model assumptions?, Phys. Rev., D100, 10, 103023 (2019) · doi:10.1103/PhysRevD.100.103023
[290] Kawaguchi, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K., Frequency-domain gravitational waveform models for inspiraling binary neutron stars, Phys. Rev., D97, 4, 044044 (2018) · doi:10.1103/PhysRevD.97.044044
[291] Kawaguchi, K., Kyutoku, K., Nakano, H., Shibata, M.: Extracting the cutoff frequency in the gravitational-wave spectrum of black hole-neutron star mergers. arXiv e-prints arXiv:1709.02754
[292] Kidder, LE; Will, CM; Wiseman, AG, Spin effects in the inspiral of coalescing compact binaries, Phys. Rev., D47, 4183-4187 (1993) · doi:10.1103/PhysRevD.47.R4183
[293] Kim, YM; Lim, Y.; Kwak, K.; Hyun, CH; Lee, CH, Tidal deformability of neutron stars with realistic nuclear energy density functionals, Phys. Rev., C98, 6, 065805 (2018) · doi:10.1103/PhysRevC.98.065805
[294] Kiuchi, K.; Kawaguchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K., Sub-radian-accuracy gravitational waveforms of coalescing binary neutron stars in numerical relativity, Phys. Rev., D96, 8, 084060 (2017) · doi:10.1103/PhysRevD.96.084060
[295] Kiuchi, K.; Kyohei, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M., Sub-radian-accuracy gravitational waves from coalescing binary neutron stars II: Systematic study on the equation of state, binary mass, and mass ratio, Phys. Rev., D101, 084006 (2020) · doi:10.1103/PhysRevD.101.084006
[296] Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M., Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers, Phys. Rev., D97, 12, 124039 (2018) · doi:10.1103/PhysRevD.97.124039
[297] Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M.; Wada, T., High resolution numerical-relativity simulations for the merger of binary magnetized neutron stars, Phys. Rev., D90, 4, 041502 (2014) · doi:10.1103/PhysRevD.90.041502
[298] Kochanek, CS, Coalescing binary neutron stars, Astrophys. J., 398, 234 (1992) · doi:10.1086/171851
[299] Kokkotas, KD; Schäfer, G., Tidal and tidal resonant effects in coalescing binaries, Mon. Not. R. Astron. Soc., 275, 301 (1995) · doi:10.1093/mnras/275.2.301
[300] Kokkotas, K.D., Schmidt, B.G.: Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). doi:10.12942/lrr-1999-2 · Zbl 0984.83002
[301] Kopal, Z., Dynamics of Close Binary Systems, D. Reidel Dordrecht (1978) · Zbl 0387.70017 · doi:10.1007/978-94-009-9780-6
[302] Kopeikin, S.; Vlasov, I., Parameterized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem, Phys. Rep., 400, 209-318 (2004) · doi:10.1016/j.physrep.2004.08.004
[303] Kopeikin, SM, Covariant equations of motion of extended bodies with arbitrary mass and spin multipoles, Phys. Rev., D99, 8, 084008 (2019) · doi:10.1103/PhysRevD.99.084008
[304] Koppel, S.; Bovard, L.; Rezzolla, L., A general-relativistic determination of the threshold mass to prompt collapse in binary neutron star mergers, Astrophys. J., 872, 1, L16 (2019) · doi:10.3847/2041-8213/ab0210
[305] Krastev, PG; Li, BA, Imprints of the nuclear symmetry energy on the tidal deformability of neutron stars, J. Phys., G46, 7, 074001 (2019) · doi:10.1088/1361-6471/ab1a7a
[306] Krishnendu, NV; Arun, KG; Mishra, CK, Testing the binary black hole nature of a compact binary coalescence, Phys. Rev. Lett., 119, 9, 091101 (2017) · doi:10.1103/PhysRevLett.119.091101
[307] Kumar, B.; Biswal, SK; Patra, SK, Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state, Phys. Rev., C95, 1, 015801 (2017) · doi:10.1103/PhysRevC.95.015801
[308] Kumar, B.; Landry, P., Inferring neutron star properties from GW170817 with universal relations, Phys. Rev., D99, 12, 123026 (2019) · doi:10.1103/PhysRevD.99.123026
[309] Kyutoku, K.; Fujibayashi, S.; Hayashi, K.; Kawaguchi, K.; Kiuchi, K.; Shibata, M.; Tanaka, M., On the possibility of GW190425 being a black hole-neutron star binary merger, Astrophys. J., 890, 1, L4 (2020) · doi:10.3847/2041-8213/ab6e70
[310] Kyutoku, K.; Shibata, M.; Taniguchi, K., Reducing orbital eccentricity in initial data of binary neutron stars, Phys. Rev., D90, 6, 064006 (2014) · doi:10.1103/PhysRevD.90.064006
[311] Laarakkers, W.G., Poisson, E.: Quadrupole moments of neutron stars. Astrophys. J. 512, 282. doi:10.1086/306732
[312] Lackey, BD; Bernuzzi, S.; Galley, CR; Meidam, J.; Van Den Broeck, C., Effective-one-body waveforms for binary neutron stars using surrogate models, Phys. Rev., D95, 10, 104036 (2017) · doi:10.1103/PhysRevD.95.104036
[313] Lackey, BD; Kyutoku, K.; Shibata, M.; Brady, PR; Friedman, JL, Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model, Phys. Rev., D89, 043009 (2014) · doi:10.1103/PhysRevD.89.043009
[314] Lackey, BD; Pürrer, M.; Taracchini, A.; Marsat, S., Surrogate model for an aligned-spin effective one body waveform model of binary neutron star inspirals using Gaussian process regression, Phys. Rev., D100, 2, 024002 (2019) · doi:10.1103/PhysRevD.100.024002
[315] Lackey, BD; Wade, L., Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars, Phys. Rev., D91, 4, 043002 (2015) · doi:10.1103/PhysRevD.91.043002
[316] Lai, D., Resonant oscillations and tidal heating in coalescing binary neutron stars, Mon. Not. R. Astron. Soc., 270, 611 (1994) · doi:10.1093/mnras/270.3.611
[317] Lai, D.; Rasio, FA; Shapiro, SL, Ellipsoidal figures of equilibrium: compressible models, Astrophys. J. Suppl., 88, 205-252 (1993) · doi:10.1086/191822
[318] Lai, X.; Zhou, E.; Xu, R., Strangeons constitute bulk strong matter: test using GW 170817, Eur. Phys. J., A55, 4, 60 (2019) · doi:10.1140/epja/i2019-12720-8
[319] Lalit, S.; Mamun, MAA; Constantinou, C.; Prakash, M., Dense matter equation of state for neutron star mergers, Eur. Phys. J. A, 55, 1, 10 (2019) · doi:10.1140/epja/i2019-12670-1
[320] Landry, P., Tidal deformation of a slowly rotating material body: interior metric and Love numbers, Phys. Rev., D95, 12, 124058 (2017) · doi:10.1103/PhysRevD.95.124058
[321] Landry, P.: Rotational-tidal phasing of the binary neutron star waveform arXiv e-prints arXiv:1805.01882
[322] Landry, P.; Poisson, E., Dynamical response to a stationary tidal field, Phys. Rev., D92, 12, 124041 (2015) · doi:10.1103/PhysRevD.92.124041
[323] Landry, P.; Poisson, E., Gravitomagnetic response of an irrotational body to an applied tidal field, Phys. Rev., D91, 10, 104026 (2015) · doi:10.1103/PhysRevD.91.104026
[324] Landry, P.; Poisson, E., Tidal deformation of a slowly rotating material body, External metric. Phys. Rev., D91, 104018 (2015) · doi:10.1103/PhysRevD.91.104018
[325] Lange, J., O’Shaughnessy, R., Rizzo, M.: Rapid and accurate parameter inference for coalescing, precessing compact binaries arXiv e-prints arXiv:1805.1045
[326] Lange, J., Parameter estimation method that directly compares gravitational wave observations to numerical relativity, Phys. Rev., D96, 10, 104041 (2017) · doi:10.1103/PhysRevD.96.104041
[327] Lattimer, JM, The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci., 62, 485-515 (2012) · doi:10.1146/annurev-nucl-102711-095018
[328] Lattimer, JM; Lim, Y., Constraining the symmetry parameters of the nuclear interaction, Astrophys. J., 771, 51 (2013) · doi:10.1088/0004-637X/771/1/51
[329] Lau, SY; Leung, PT; Lin, LM, Two-layer compact stars with crystalline quark matter: screening effect on the tidal deformability, Phys. Rev., D99, 2, 023018 (2019) · doi:10.1103/PhysRevD.99.023018
[330] Lazarus, P., Einstein@Home discovery of a Double-Neutron Star Binary in the PALFA Survey, Astrophys. J., 831, 2, 150 (2016) · doi:10.3847/0004-637X/831/2/150
[331] Lee, WH; Ramirez-Ruiz, E., The progenitors of short gamma-ray bursts, New J. Phys., 9, 17 (2007) · doi:10.1088/1367-2630/9/1/017
[332] Lee, WH; Ramirez-Ruiz, E.; van de Ven, G., Short gamma-ray bursts from dynamically-assembled compact binaries in globular clusters: pathways, rates, hydrodynamics and cosmological setting, Astrophys. J., 720, 953-975 (2010) · doi:10.1088/0004-637X/720/1/953
[333] Lehner, L.; Liebling, SL; Palenzuela, C.; Caballero, OL; O’Connor, E.; Anderson, M.; Neilsen, D., Unequal mass binary neutron star mergers and multimessenger signals, Class. Quant. Grav., 33, 18, 184002 (2016) · doi:10.1088/0264-9381/33/18/184002
[334] Leibovich, AK; Maia, NT; Rothstein, IZ; Yang, Z., Second post-Newtonian order radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach, Phys. Rev., D101, 084058 (2020) · doi:10.1103/PhysRevD.101.084058
[335] Levi, M., Effective field theories of post-Newtonian gravity: a comprehensive review, Rep. Prog. Phys., 83, 075901 (2020) · doi:10.1088/1361-6633/ab12bc
[336] Levi, M., Mcleod, A.J., Von Hippel, M.: NNNLO gravitational quadratic-in-spin interactions at the quartic order in G arXiv e-prints arXiv:2003.07890
[337] Levi, M., Mougiakakos, S., Vieira, M.: Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order arXiv e-prints arXiv:1912.06276 · Zbl 1459.83009
[338] Levi, M.; Steinhoff, J., Leading order finite size effects with spins for inspiralling compact binaries, JHEP, 06, 059 (2015) · doi:10.1007/JHEP06(2015)059
[339] Levi, M.; Steinhoff, J., Spinning gravitating objects in the effective field theory in the post-Newtonian scheme, JHEP, 09, 219 (2015) · Zbl 1388.83031 · doi:10.1007/JHEP09(2015)219
[340] Levi, M., Steinhoff, J.: Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order arXiv e-prints arXiv:1607.04252
[341] Levi, M.; Steinhoff, J., Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme, JCAP, 01, 008 (2016) · doi:10.1088/1475-7516/2016/01/008
[342] Levi, M.; Steinhoff, J., EFTofPNG: a package for high precision computation with the Effective Field Theory of Post-Newtonian Gravity, Class. Quant. Grav., 34, 24, 244001 (2017) · doi:10.1088/1361-6382/aa941e
[343] Li, BL; Cui, ZF; Yu, ZH; Yan, Y.; An, S.; Zong, HS, Structures of the strange quark stars within a quasiparticle model, Phys. Rev., D99, 4, 043001 (2019) · doi:10.1103/PhysRevD.99.043001
[344] Li, CM; Yan, Y.; Geng, JJ; Huang, YF; Zong, HS, Constraints on the hybrid equation of state with a crossover Hadron-Quark phase transition in the light of GW170817, Phys. Rev., D98, 8, 083013 (2018) · doi:10.1103/PhysRevD.98.083013
[345] Li, JJ; Sedrakian, A., Implications from GW170817 for \(\Delta \)-isobar admixed hypernuclear compact stars, Astrophys. J., 874, 2, L22 (2019) · doi:10.3847/2041-8213/ab1090
[346] Lim, Y.; Holt, JW, Neutron star tidal deformabilities constrained by nuclear theory and experiment, Phys. Rev. Lett., 121, 6, 062701 (2018) · doi:10.1103/PhysRevLett.121.062701
[347] Lim, Y.; Holt, JW, Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817, Eur. Phys. J. A, 55, 11, 209 (2019) · doi:10.1140/epja/i2019-12917-9
[348] Lindblom, L., Inverse structure problem for neutron-star binaries, Phys. Rev., D98, 4, 043012 (2018) · doi:10.1103/PhysRevD.98.043012
[349] Lindblom, L., Indik, N.M.: Spectral approach to the relativistic inverse stellar structure problem II. Phys. Rev. D89(6), 064003 (2014). doi:10.1103/PhysRevD.89.064003. [Erratum: Phys. Rev. D93(12), 129903 (2016)]
[350] Liu, H.; Xu, J.; Ko, CM, Properties of strange quark stars with isovector interactions, Phys. Lett. B, 803, 135343 (2020) · doi:10.1016/j.physletb.2020.135343
[351] Llanes-Estrada, FJ; Lope-Oter, E., Hadron matter in neutron stars in view of gravitational wave observations, Prog. Part. Nucl. Phys., 109, 103715 (2019) · doi:10.1016/j.ppnp.2019.103715
[352] Lo, KW; Lin, LM, The spin parameter of uniformly rotating compact stars, Astrophys. J., 728, 12 (2011) · doi:10.1088/0004-637X/728/1/12
[353] Lourenco, O.; Bhuyan, M.; Lenzi, CH; Dutra, M.; Gonzalez-Boquera, C.; Centelles, M.; Vinas, X., GW170817 constraints analyzed with Gogny forces and momentum-dependent interactions, Phys. Lett., B803, 135306 (2020) · doi:10.1016/j.physletb.2020.135306
[354] Lourenco, O.; Dutra, M.; Lenzi, CH; Biswal, SK; Bhuyan, M.; Menezes, DP, Consistent Skyrme parametrizations constrained by GW170817, Eur. Phys. J. A, 56, 2, 32 (2020) · doi:10.1140/epja/s10050-020-00040-z
[355] Lourenco, O.; Dutra, M.; Lenzi, CH; Flores, CV; Menezes, DP, Consistent relativistic mean field models constrained by GW170817, Phys. Rev. C, 99, 4, 045202 (2019) · doi:10.1103/PhysRevC.99.045202
[356] Lousto, CO; Nakano, H.; Zlochower, Y.; Campanelli, M., Intermediate-mass-ratio black hole binaries: Intertwining numerical and perturbative techniques, Phys. Rev., D82, 104057 (2010) · doi:10.1103/PhysRevD.82.104057
[357] Love, AEH, The yielding of the earth to disturbing forces, Proc. R. Soc. Lond. Ser. A, 82, 551, 73-88 (1909) · JFM 40.0993.02 · doi:10.1098/rspa.1909.0008
[358] Lucca, M.; Sagunski, L., The lifetime of binary neutron star merger remnants, J. High Energy Astrophys., 27, 33-37 (2020) · doi:10.1016/j.jheap.2020.04.003
[359] Lynch, RS; Freire, PCC; Ransom, SM; Jacoby, BA, The timing of nine globular cluster pulsars, Astrophys. J., 745, 109 (2012) · doi:10.1088/0004-637X/745/2/109
[360] Ma, S.; Yu, H.; Chen, Y., Excitation of f-modes during mergers of spinning binary neutron star, Phys. Rev., D101, 123020 (2020) · doi:10.1103/PhysRevD.101.123020
[361] Maia, NT; Galley, CR; Leibovich, AK; Porto, RA, Radiation reaction for spinning bodies in effective field theory II: spin-spin effects, Phys. Rev., D96, 8, 084065 (2017) · doi:10.1103/PhysRevD.96.084065
[362] Malik, T.; Agrawal, BK; De, JN; Samaddar, SK; Providencia, C.; Mondal, C.; Jha, TK, Tides in merging neutron stars: consistency of the GW170817 event with experimental data on finite nuclei, Phys. Rev., C99, 5, 052801 (2019) · doi:10.1103/PhysRevC.99.052801
[363] Malik, T.; Alam, N.; Fortin, M.; Providencia, C.; Agrawal, BK; Jha, TK; Kumar, B.; Patra, SK, GW170817: constraining the nuclear matter equation of state from the neutron star tidal deformability, Phys. Rev., C98, 3, 035804 (2018) · doi:10.1103/PhysRevC.98.035804
[364] Marchand, T.; Bernard, L.; Blanchet, L.; Faye, G., Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order, Phys. Rev., D97, 4, 044023 (2018) · doi:10.1103/PhysRevD.97.044023
[365] Marczenko, M.; Blaschke, D.; Redlich, K.; Sasaki, C., Chiral symmetry restoration by parity doubling and the structure of neutron stars, Phys. Rev., D98, 10, 103021 (2018) · doi:10.1103/PhysRevD.98.103021
[366] Margalit, B.; Metzger, BD, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J., 850, 2, L19 (2017) · doi:10.3847/2041-8213/aa991c
[367] Margalit, B.; Metzger, BD, The multi-messenger matrix: the future of neutron star merger constraints on the nuclear equation of state, Astrophys. J., 880, 1, L15 (2019) · doi:10.3847/2041-8213/ab2ae2
[368] Marsat, S., Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries, Class. Quant. Grav., 32, 8, 085008 (2015) · Zbl 1328.83103 · doi:10.1088/0264-9381/32/8/085008
[369] Martinez, JG; Stovall, K.; Freire, PCC; Deneva, JS; Jenet, FA; McLaughlin, MA; Bagchi, M.; Bates, SD; Ridolfi, A., Pulsar J0453+1559: a double neutron star system with a large mass asymmetry, Astrophys. J., 812, 2, 143 (2015) · doi:10.1088/0004-637X/812/2/143
[370] Maselli, A.; Cardoso, V.; Ferrari, V.; Gualtieri, L.; Pani, P., Equation-of-state-independent relations in neutron stars, Phys. Rev., D88, 2, 023007 (2013) · doi:10.1103/PhysRevD.88.023007
[371] Maselli, A.; Gualtieri, L.; Ferrari, V., Constraining the equation of state of nuclear matter with gravitational wave observations: tidal deformability and tidal disruption, Phys. Rev., D88, 10, 104040 (2013) · doi:10.1103/PhysRevD.88.104040
[372] Maselli, A., Gualtieri, L., Pannarale, F., Ferrari, V.: On the validity of the adiabatic approximation in compact binary inspirals. Phys. Rev. D86, 044032 (2012). doi:10.1103/PhysRevD.86.044032
[373] Maselli, A.; Pani, P.; Cardoso, V.; Abdelsalhin, T.; Gualtieri, L.; Ferrari, V., Probing Planckian corrections at the horizon scale with LISA binaries, Phys. Rev. Lett., 120, 8, 081101 (2018) · doi:10.1103/PhysRevLett.120.081101
[374] Maselli, A.; Pani, P.; Cardoso, V.; Abdelsalhin, T.; Gualtieri, L.; Ferrari, V., From micro to macro and back: probing near-horizon quantum structures with gravitational waves, Class. Quant. Grav., 36, 16, 167001 (2019) · doi:10.1088/1361-6382/ab30ff
[375] Maselli, A.; Pnigouras, P.; Nielsen, NG; Kouvaris, C.; Kokkotas, KD, Dark stars: gravitational and electromagnetic observables, Phys. Rev., D96, 2, 023005 (2017) · doi:10.1103/PhysRevD.96.023005
[376] McDermott, PN; van Horn, HM; Hansen, CJ; Buland, R., The nonradial oscillation spectra of neutron stars, Astrophys. J. Lett., 297, L37-L40 (1985) · doi:10.1086/184553
[377] McKechan, D.J.A., Robinson, C., Sathyaprakash, B.S.: A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries. Class. Quant. Grav. 27, 084020 (2010). doi:10.1088/0264-9381/27/8/084020
[378] Mena-Fernandez, J., Gonzalez-Romero, L.M.: Piecewise polytropic meshing and refinement method for the reconstruction of the neutron star equation of state using tidal deformabilities and constraints in the piecewise polytropic parameters given by the GW170817 event arXiv e-prints arXiv:1903.08921
[379] Mendes, RFP; Yang, H., Tidal deformability of boson stars and dark matter clumps, Class. Quant. Grav., 34, 18, 185001 (2017) · Zbl 1373.85003 · doi:10.1088/1361-6382/aa842d
[380] Messina, F., Dudi, R., Nagar, A., Bernuzzi, S.: Quasi-5.5PN TaylorF2 approximant for compact binaries: point-mass phasing and impact on the tidal polarizability inference. Phys. Rev. D99(12), 124051 (2019). doi:10.1103/PhysRevD.99.124051
[381] Messina, F., Maldarella, A., Nagar, A.: Factorization and resummation: a new paradigm to improve gravitational wave amplitudes. II: the higher multipolar modes. Phys. Rev. D97(8), 084016 (2018). doi:10.1103/PhysRevD.97.084016
[382] Metzger, BD, Kilonovae. Living Rev Relativ, 23, 1 (2020) · doi:10.1007/s41114-019-0024-0
[383] Mishra, CK; Kela, A.; Arun, KG; Faye, G., Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: an update, Phys. Rev., D93, 8, 084054 (2016) · doi:10.1103/PhysRevD.93.084054
[384] Moldenhauer, N.; Markakis, CM; Johnson-McDaniel, NK; Tichy, W.; Brügmann, B., Initial data for binary neutron stars with adjustable eccentricity, Phys. Rev., D90, 8, 084043 (2014) · doi:10.1103/PhysRevD.90.084043
[385] Montana, G.; Tolos, L.; Hanauske, M.; Rezzolla, L., Constraining twin stars with GW170817, Phys. Rev., D99, 10, 103009 (2019) · doi:10.1103/PhysRevD.99.103009
[386] Mora, T.; Will, CM, Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects, Phys. Rev., D69, 10, 104021 (2004) · doi:10.1103/PhysRevD.69.104021
[387] Most, ER; Papenfort, LJ; Dexheimer, V.; Hanauske, M.; Schramm, S.; Stöcker, H.; Rezzolla, L., Signatures of quark-hadron phase transitions in general-relativistic neutron-star merger, Phys. Rev. Lett., 122, 061101 (2019) · doi:10.1103/PhysRevLett.122.061101
[388] Most, ER; Papenfort, LJ; Rezzolla, L., Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics, Mon. Not. R. Astron. Soc., 490, 3, 3588-3600 (2019) · doi:10.1093/mnras/stz2809
[389] Most, ER; Papenfort, LJ; Tsokaros, A.; Rezzolla, L., Impact of high spins on the ejection of mass in GW170817, Astrophys. J., 884, 40 (2019) · doi:10.3847/1538-4357/ab3ebb
[390] Most, ER; Weih, LR; Rezzolla, L., The heavier the better: how to constrain mass ratios and spins of high-mass neutron-star mergers, Mon. Not. R. Astron. Soc. Lett., 496, L16-L21 (2020) · doi:10.1093/mnrasl/slaa079
[391] Most, ER; Weih, LR; Rezzolla, L.; Schaffner-Bielich, J., New constraints on radii and tidal deformabilities of neutron stars from GW170817, Phys. Rev. Lett., 120, 26, 261103 (2018) · doi:10.1103/PhysRevLett.120.261103
[392] Nagar, A., Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling, Phys. Rev., D84, 084028 (2011) · doi:10.1103/PhysRevD.84.084028
[393] Nagar, A.; Akcay, S., Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries and its effective-one-body representation, Phys. Rev., D85, 044025 (2012) · doi:10.1103/PhysRevD.85.044025
[394] Nagar, A., Messina, F., Kavanagh, C., Lukes-Gerakopoulos, G., Warburton, N., Bernuzzi, S., Harms, E.: Factorization and resummation: a new paradigm to improve gravitational wave amplitudes. III: the spinning test-body terms. Phys. Rev. D100(10), 104056 (2019). doi:10.1103/PhysRevD.100.104056
[395] Nagar, A.; Messina, F.; Rettegno, P.; Bini, D.; Damour, T.; Geralico, A.; Akcay, S.; Bernuzzi, S., Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned, inspiralling, neutron star binaries, Phys. Rev., D99, 4, 044007 (2019) · doi:10.1103/PhysRevD.99.044007
[396] Nagar, A.; Pratten, G.; Riemenschneider, G.; Gamba, R., Multipolar effective one body model for nonspinning black hole binaries, Phys. Rev., D101, 2, 024041 (2020) · doi:10.1103/PhysRevD.101.024041
[397] Nagar, A.; Rettegno, P., Efficient effective one body time-domain gravitational waveforms, Phys. Rev., D99, 021501 (2019) · doi:10.1103/PhysRevD.99.021501
[398] Nagar, A.; Riemenschneider, G.; Pratten, G., Impact of numerical relativity information on effective-one-body waveform models, Phys. Rev., D96, 8, 084045 (2017) · doi:10.1103/PhysRevD.96.084045
[399] Nagar, A.; Shah, A., Factorization and resummation: a new paradigm to improve gravitational wave amplitudes, Phys. Rev., D94, 10, 104017 (2016) · doi:10.1103/PhysRevD.94.104017
[400] Nagar, A., Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects, Phys. Rev., D98, 104052 (2018) · doi:10.1103/PhysRevD.98.104052
[401] Nakar, E., Short-hard gamma-ray bursts. Phys. Rept., 442, 166-236 (2007) · doi:10.1016/j.physrep.2007.02.005
[402] Nandi, R.; Char, P., Hybrid stars in the light of GW170817, Astrophys. J., 857, 1, 12 (2018) · doi:10.3847/1538-4357/aab78c
[403] Narayan, R.; Paczynski, B.; Piran, T., Gamma-ray bursts as the death throes of massive binary stars, Astrophys. J., 395, L83-L86 (1992) · doi:10.1086/186493
[404] Narikawa, T.; Uchikata, N.; Kawaguchi, K.; Kiuchi, K.; Kyutoku, K.; Shibata, M.; Tagoshi, H., Reanalysis of the binary neutron star merger GW170817 using numerical-relativity calibrated waveform models, Phys. Rev. Research, 2, 043039 (2020) · doi:10.1103/PhysRevResearch.2.043039
[405] Neilsen, D.; Liebling, SL; Anderson, M.; Lehner, L.; O’Connor, E., Magnetized neutron stars with realistic equations of state and neutrino cooling, Phys. Rev., D89, 10, 104029 (2014) · doi:10.1103/PhysRevD.89.104029
[406] Nelson, A.; Reddy, S.; Zhou, D., Dark halos around neutron stars and gravitational waves, JCAP, 1907, 7, 012 (2019) · Zbl 1515.81219 · doi:10.1088/1475-7516/2019/07/012
[407] Nolan, P.; Kavanagh, C.; Dolan, SR; Ottewill, AC; Warburton, N.; Wardell, B., Octupolar invariants for compact binaries on quasicircular orbits, Phys. Rev., D92, 12, 123008 (2015) · doi:10.1103/PhysRevD.92.123008
[408] Ozel, F.; Freire, P., Masses, radii, and equation of state of neutron stars, Annu. Rev. Astron. Astrophys., 54, 401 (2016) · doi:10.1146/annurev-astro-081915-023322
[409] Paczynski, B., Gamma-ray bursters at cosmological distances, Astrophys. J., 308, L43-L46 (1986) · doi:10.1086/184740
[410] Palenzuela, C.; Lehner, L.; Ponce, M.; Liebling, SL; Anderson, M., Gravitational and electromagnetic outputs from binary neutron star mergers, Phys. Rev. Lett., 111, 061105 (2013) · doi:10.1103/PhysRevLett.111.061105
[411] Palenzuela, C.; Liebling, SL; Neilsen, D.; Lehner, L.; Caballero, OL; O’Connor, E.; Anderson, M., Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling, Phys. Rev., D92, 4, 044045 (2015) · doi:10.1103/PhysRevD.92.044045
[412] Pan, Y.; Buonanno, A.; Boyle, M.; Buchman, LT; Kidder, LE; Pfeiffer, HP; Scheel, MA, Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism, Phys. Rev., D84, 124052 (2011) · doi:10.1103/PhysRevD.84.124052
[413] Pan, Y., Buonanno, A., Fujita, R., Racine, E., Tagoshi, H.: Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries. Phys. Rev. D83, 064003 (2011). doi:10.1103/PhysRevD.83.064003. [Erratum: Phys. Rev. D87(10),109901 (2013)]
[414] Pan, Y.; Buonanno, A.; Taracchini, A.; Boyle, M.; Kidder, LE, Stability of nonspinning effective-one-body model in approximating two-body dynamics and gravitational-wave emission, Phys. Rev., D89, 061501 (2014) · doi:10.1103/PhysRevD.89.061501
[415] Pan, Y.; Buonanno, A.; Taracchini, A.; Kidder, LE; Mroue, AH, Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism, Phys. Rev., D89, 084006 (2014) · doi:10.1103/PhysRevD.89.084006
[416] Pang, PTH; Hannuksela, OA; Dietrich, T.; Pagano, G.; Harry, IW, Lensed or not lensed: Determining lensing magnifications for binary neutron star mergers from a single detection, Mon. Not. R. Astron. Soc., 495, 4, 3740-3750 (2020) · doi:10.1093/mnras/staa1430
[417] Pani, P., I-Love-Q relations for gravastars and the approach to the black-hole limit, Phys. Rev., D92, 12, 124030 (2015) · doi:10.1103/PhysRevD.92.124030
[418] Pani, P.; Berti, E., Slowly rotating neutron stars in scalar-tensor theories, Phys. Rev., D90, 2, 024025 (2014) · doi:10.1103/PhysRevD.90.024025
[419] Pani, P.; Gualtieri, L.; Abdelsalhin, T.; Jimenez-Forteza, X., Magnetic tidal Love numbers clarified, Phys. Rev., D98, 12, 124023 (2018) · doi:10.1103/PhysRevD.98.124023
[420] Pani, P.; Gualtieri, L.; Ferrari, V., Tidal Love numbers of a slowly spinning neutron star, Phys. Rev., D92, 12, 124003 (2015) · doi:10.1103/PhysRevD.92.124003
[421] Pani, P.; Gualtieri, L.; Maselli, A.; Ferrari, V., Tidal deformations of a spinning compact object, Phys. Rev., D92, 2, 024010 (2015) · doi:10.1103/PhysRevD.92.024010
[422] Pannarale, F.; Berti, E.; Kyutoku, K.; Lackey, BD; Shibata, M., Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers, Phys. Rev., D92, 8, 081504 (2015) · doi:10.1103/PhysRevD.92.081504
[423] Pannarale, F.; Berti, E.; Kyutoku, K.; Shibata, M., Nonspinning black hole-neutron star mergers: a model for the amplitude of gravitational waveforms, Phys. Rev., D88, 8, 084011 (2013) · doi:10.1103/PhysRevD.88.084011
[424] Pannarale, F.; Rezzolla, L.; Ohme, F.; Read, JS, Will black hole-neutron star binary inspirals tell us about the neutron star equation of state?, Phys. Rev., D84, 104017 (2011)
[425] Papenfort, LJ; Gold, R.; Rezzolla, L., Dynamical ejecta and nucleosynthetic yields from eccentric binary neutron-star mergers, Phys. Rev., D98, 10, 104028 (2018) · doi:10.1103/PhysRevD.98.104028
[426] Pappas, G., Unified description of astrophysical properties of neutron stars independent of the equation of state, Mon. Not. R. Astron. Soc., 454, 4, 4066-4084 (2015) · doi:10.1093/mnras/stv2218
[427] Pappas, G., An accurate metric for the spacetime around rotating neutron stars, Mon. Not. R. Astron. Soc., 466, 4, 4381-4394 (2017) · doi:10.1093/mnras/stx019
[428] Pappas, G.; Apostolatos, TA, Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts, Phys. Rev. Lett., 112, 121101 (2014) · doi:10.1103/PhysRevLett.112.121101
[429] Parisi, A.; Sturani, R., Gravitational waves from neutron star excitations in a binary inspiral, Phys. Rev., D97, 4, 043015 (2018) · doi:10.1103/PhysRevD.97.043015
[430] Paschalidis, V.; Yagi, K.; Alvarez-Castillo, D.; Blaschke, DB; Sedrakian, A., Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars, Phys. Rev., D97, 8, 084038 (2018) · doi:10.1103/PhysRevD.97.084038
[431] Penner, AJ; Andersson, N.; Samuelsson, L.; Hawke, I.; Jones, DI, Tidal deformations of neutron stars: the role of stratification and elasticity, Phys. Rev., D84, 103006 (2011) · doi:10.1103/PhysRevD.84.103006
[432] Perego, A.; Radice, D.; Bernuzzi, S., AT2017gfo: an anisotropic and three-component Kilonova counterpart of GW170817, Astrophys. J., 850, 2, L37 (2017) · doi:10.3847/2041-8213/aa9ab9
[433] Perot, L.; Chamel, N.; Sourie, A., Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state, Phys. Rev., C100, 3, 035801 (2019) · doi:10.1103/PhysRevC.100.035801
[434] Perot, L.; Chamel, N.; Sourie, A., Role of the crust in the tidal deformability of a neutron star within a unified treatment of dense matter, Phys. Rev., C101, 1, 015806 (2020) · doi:10.1103/PhysRevC.101.015806
[435] Piekarewicz, J.; Fattoyev, FJ, Impact of the neutron star crust on the tidal polarizability, Phys. Rev., C99, 4, 045802 (2019) · doi:10.1103/PhysRevC.99.045802
[436] Pnigouras, P., Gravitational-wave-driven tidal secular instability in neutron star binaries, Phys. Rev., D100, 6, 063016 (2019) · doi:10.1103/PhysRevD.100.063016
[437] Poisson, E., Gravitational waves from inspiraling compact binaries: the Quadrupole moment term, Phys. Rev., D57, 5287-5290 (1998) · doi:10.1103/PhysRevD.57.5287
[438] Poisson, E., Absorption of mass and angular momentum by a black hole: time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation, Phys. Rev., D70, 084044 (2004) · doi:10.1103/PhysRevD.70.084044
[439] Poisson, E., Sasaki, M.: Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections. Phys. Rev. D51, 5753-5767 (1995). doi:10.1103/PhysRevD.51.5753
[440] Porto, RA, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev., D73, 104031 (2006) · doi:10.1103/PhysRevD.73.104031
[441] Porto, RA, Absorption effects due to spin in the worldline approach to black hole dynamics, Phys. Rev., D77, 064026 (2008) · doi:10.1103/PhysRevD.77.064026
[442] Porto, RA, The effective field theorist’s approach to gravitational dynamics, Phys. Rep., 633, 1-104 (2016) · Zbl 1359.83024 · doi:10.1016/j.physrep.2016.04.003
[443] Porto, RA, The tune of love and the nature(ness) of spacetime, Fortsch. Phys., 64, 10, 723-729 (2016) · Zbl 1349.83026 · doi:10.1002/prop.201600064
[444] Porto, RA; Ross, A.; Rothstein, IZ, Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order, JCAP, 1103, 009 (2011) · doi:10.1088/1475-7516/2011/03/009
[445] Porto, R.A., Ross, A., Rothstein, I.Z.: Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order. JCAP 1209, 028 (2012). doi:10.1088/1475-7516/2012/09/028
[446] Postnikov, S.; Prakash, M.; Lattimer, JM, Tidal love numbers of neutron and self-bound quark stars, Phys. Rev., D82, 024016 (2010) · doi:10.1103/PhysRevD.82.024016
[447] Pratten, G.; Schmidt, P.; Hinderer, T., Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals, Nat Commun, 11, 2553 (2020) · doi:10.1038/s41467-020-15984-5
[448] Quddus, A.; Panotopoulos, G.; Kumar, B.; Ahmad, S.; Patra, SK, GW170817 constraints on the properties of a neutron star in the presence of WIMP dark matter, J. Phys. G: Nucl. Part. Phys., 47, 095202 (2020) · doi:10.1088/1361-6471/ab9d36
[449] Racine, E., Flanagan, E.E.: Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev. D71, 044010 (2005). doi:10.1103/PhysRevD.71.044010. [Erratum: Phys. Rev. D88(8), 089903 (2013). doi:10.1103/PhysRevD.88.089903]
[450] Radice, D.: General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. 838(1), L2 (2017). doi:10.3847/2041-8213/aa6483
[451] Radice, D.; Bernuzzi, S.; Del Pozzo, W.; Roberts, LF; Ott, CD, Probing extreme-density matter with gravitational wave observations of binary neutron star merger remnants, Astrophys. J., 842, 2, L10 (2017) · doi:10.3847/2041-8213/aa775f
[452] Radice, D.; Dai, L., Multimessenger parameter estimation of GW170817, Eur. Phys. J., A55, 4, 50 (2019) · doi:10.1140/epja/i2019-12716-4
[453] Radice, D.; Galeazzi, F.; Lippuner, J.; Roberts, LF; Ott, CD; Rezzolla, L., Dynamical mass ejection from binary neutron star mergers, Mon. Not. R. Astron. Soc., 460, 3, 3255-3271 (2016) · doi:10.1093/mnras/stw1227
[454] Radice, D.; Perego, A.; Zappa, F.; Bernuzzi, S., GW170817: joint constraint on the neutron star equation of state from multimessenger observations, Astrophys. J., 852, 2, L29 (2018) · doi:10.3847/2041-8213/aaa402
[455] Radice, D.; Rezzolla, L.; Galeazzi, F., Beyond second-order convergence in simulations of binary neutron stars in full general-relativity, Mon. Not. R. Astron. Soc., 437, L46-L50 (2014) · doi:10.1093/mnrasl/slt137
[456] Radice, D.; Rezzolla, L.; Galeazzi, F., High-order fully general-relativistic hydrodynamics: new approaches and tests, Class. Quant. Grav., 31, 075012 (2014) · Zbl 1291.83092 · doi:10.1088/0264-9381/31/7/075012
[457] Raithel, C.; Ozel, F.; Psaltis, D., Tidal deformability from GW170817 as a direct probe of the neutron star radius, Astrophys. J., 857, 2, L23 (2018) · doi:10.3847/2041-8213/aabcbf
[458] Raithel, CA, Constraints on the neutron star equation of state from GW170817, Eur. Phys. J. A, 55, 5, 80 (2019) · doi:10.1140/epja/i2019-12759-5
[459] Rathore, Y., Broderick, A.E., Blandford, R.: A variational formalism for tidal excitation: non-rotating, homentropic stars. Mon. Not. R. Astron. Soc. 339, 25 (2003). doi:10.1046/j.1365-8711.2003.06140.x
[460] Read, JS; Baiotti, L.; Creighton, JDE; Friedman, JL; Giacomazzo, B., Matter effects on binary neutron star waveforms, Phys. Rev., D88, 044042 (2013) · doi:10.1103/PhysRevD.88.044042
[461] Read, JS; Lackey, BD; Owen, BJ; Friedman, JL, Constraints on a phenomenologically parameterized neutron-star equation of state, Phys. Rev., D79, 124032 (2009) · doi:10.1103/PhysRevD.79.124032
[462] Regge, T.; Wheeler, J., Stability of a Schwarzschild singularity, Phys. Rev., 108, 4, 1063-1069 (1957) · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[463] Regimbau, T.; Dent, T.; Del Pozzo, W.; Giampanis, S.; Li, TG, A Mock data challenge for the Einstein gravitational-wave telescope, Phys. Rev., D86, 122001 (2012) · doi:10.1103/PhysRevD.86.122001
[464] Reina, B.; Sanchis-Gual, N.; Vera, R.; Font, JA, Completion of the universal I-Love-Q relations in compact stars including the mass, Mon. Not. R. Astron. Soc., 470, 1, L54-L58 (2017) · doi:10.1093/mnrasl/slx078
[465] Reisenegger, A.; Goldreich, P., Excitation of neutron star normal modes during binary inspiral, Astrophys. J., 426, 688 (1994) · doi:10.1086/174105
[466] Reisswig, C.; Bishop, N.; Pollney, D.; Szilagyi, B., Unambiguous determination of gravitational waveforms from binary black hole mergers, Phys. Rev. Lett., 103, 221101 (2009) · doi:10.1103/PhysRevLett.103.221101
[467] Rezzolla, L.: Three Little Pieces for Computer and Relativity. In: Biĉák J., Ledvinka T. (eds) General Relativity, Cosmology and Astrophysics. Fundamental Theories of Physics, vol. 177. Springer, Cham, pp 391-425. doi:10.1007/978-3-319-06349-2_19 · Zbl 1328.83014
[468] Rezzolla, L.; Giacomazzo, B.; Baiotti, L.; Granot, J.; Kouveliotou, C., The missing link: merging neutron stars naturally produce jet-like structures and can power short Gamma-Ray Bursts, Astrophys. J., 732, L6 (2011) · doi:10.1088/2041-8205/732/1/L6
[469] Rezzolla, L.; Most, ER; Weih, LR, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J., 852, 2, L25 (2018) · doi:10.3847/2041-8213/aaa401
[470] Rezzolla, L.; Takami, K., Gravitational-wave signal from binary neutron stars: a systematic analysis of the spectral properties, Phys. Rev., D93, 12, 124051 (2016) · doi:10.1103/PhysRevD.93.124051
[471] Rezzolla, L.; Zanotti, O., Relativistic Hydrodynamics (2013), Oxford: Oxford University Press, Oxford · Zbl 1388.76002 · doi:10.1093/acprof:oso/9780198528906.001.0001
[472] Ross, A., Multipole expansion at the level of the action, Phys. Rev., D85, 125033 (2012) · doi:10.1103/PhysRevD.85.125033
[473] Rothstein, IZ, Progress in effective field theory approach to the binary inspiral problem, Gen. Relativ. Gravit., 46, 1726 (2014) · Zbl 1298.83038 · doi:10.1007/s10714-014-1726-y
[474] Ruiz, M.; Shapiro, SL; Tsokaros, A., GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev., D97, 2, 021501 (2018) · doi:10.1103/PhysRevD.97.021501
[475] Ruiz, M.; Tsokaros, A.; Paschalidis, V.; Shapiro, SL, Effects of spin on magnetized binary neutron star mergers and jet launching, Phys. Rev., D99, 8, 084032 (2019) · doi:10.1103/PhysRevD.99.084032
[476] Ryan, FD, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phys. Rev., D52, 5707-5718 (1995) · doi:10.1103/PhysRevD.52.5707
[477] Samajdar, A.; Dietrich, T., Waveform systematics for binary neutron star gravitational wave signals: effects of the point-particle baseline and tidal descriptions, Phys. Rev., D98, 12, 124030 (2018) · doi:10.1103/PhysRevD.98.124030
[478] Samajdar, A.; Dietrich, T., Waveform systematics for binary neutron star gravitational wave signals: effects of spin, precession, and the observation of electromagnetic counterparts, Phys. Rev., D100, 2, 024046 (2019) · doi:10.1103/PhysRevD.100.024046
[479] Samajdar, A., Dietrich, T.: Constructing Love-Q-relations with gravitational wave detections (2020)
[480] Sari, R.; Piran, T.; Narayan, R., Spectra and light curves of gamma-ray burst afterglows, Astrophys. J., 497, L17 (1998) · doi:10.1086/311269
[481] Sathyaprakash, BS; Dhurandhar, SV, Choice of filters for the detection of gravitational waves from coalescing binaries, Phys. Rev., D44, 3819-3834 (1991) · doi:10.1103/PhysRevD.44.3819
[482] Schäfer, G.; Jaranowski, P., Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Liv. Rev. Rel., 21, 1, 7 (2018) · doi:10.1007/s41114-018-0016-5
[483] Schmidt, P.; Hinderer, T., Frequency domain model of \(f\)-mode dynamic tides in gravitational waveforms from compact binary inspirals, Phys. Rev., D100, 2, 021501 (2019) · doi:10.1103/PhysRevD.100.021501
[484] Schutz, BF, Determining the hubble constant from gravitational wave observations, Nature, 323, 310-311 (1986) · doi:10.1038/323310a0
[485] Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M., Gravitational waves and neutrino emission from the merger of binary neutron stars, Phys. Rev. Lett., 107, 051102 (2011) · doi:10.1103/PhysRevLett.107.051102
[486] Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M., Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity, Phys. Rev., D91, 6, 064059 (2015) · doi:10.1103/PhysRevD.91.064059
[487] Sekiguchi, Y.; Kiuchi, K.; Kyutoku, K.; Shibata, M.; Taniguchi, K., Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity, Phys. Rev., D93, 12, 124046 (2016) · doi:10.1103/PhysRevD.93.124046
[488] Sennett, N.; Hinderer, T.; Steinhoff, J.; Buonanno, A.; Ossokine, S., Distinguishing Boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems, Phys. Rev., D96, 2, 024002 (2017) · doi:10.1103/PhysRevD.96.024002
[489] Shah, AG; Pound, A., Linear-in-mass-ratio contribution to spin precession and tidal invariants in Schwarzschild spacetime at very high post-Newtonian order, Phys. Rev., D91, 12, 124022 (2015) · doi:10.1103/PhysRevD.91.124022
[490] Sham, YH; Lin, LM; Leung, PT, Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory, Astrophys. J., 781, 66 (2014) · doi:10.1088/0004-637X/781/2/66
[491] Shibata, M., Gravitational waves induced by a particle orbiting around a rotating black hole: spin orbit interaction effect, Phys. Rev., D48, 663-666 (1993) · doi:10.1103/PhysRevD.48.663
[492] Shibata, M., Effects of tidal resonances in coalescing compact binary systems, Progr. Theor. Phys., 91, 5, 871-883 (1994) · doi:10.1143/ptp/91.5.871
[493] Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M., Modeling GW170817 based on numerical relativity and its implications, Phys. Rev., D96, 12, 123012 (2017) · doi:10.1103/PhysRevD.96.123012
[494] Shibata, M.; Kiuchi, K., Gravitational waves from remnant massive neutron stars of binary neutron star merger: viscous hydrodynamics effects, Phys. Rev., D95, 12, 123003 (2017) · doi:10.1103/PhysRevD.95.123003
[495] Shibata, M.; Kiuchi, K.; Sekiguchi, YI, General relativistic viscous hydrodynamics of differentially rotating neutron stars, Phys. Rev., D95, 8, 083005 (2017) · doi:10.1103/PhysRevD.95.083005
[496] Shibata, M.; Sekiguchi, Y., Radiation magnetohydrodynamics for black hole-torus system in full general relativity: a step toward physical simulation, Prog. Theor. Phys., 127, 535 (2012) · Zbl 1250.83043 · doi:10.1143/PTP.127.535
[497] Shibata, M., Taniguchi, K.: Coalescence of black hole-neutron star binaries. Living Rev. Relativ. 14, 6 (2011). doi:10.12942/lrr-2011-6
[498] Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S., Constraint on the maximum mass of neutron stars using GW170817 event, Phys. Rev., D100, 2, 023015 (2019) · doi:10.1103/PhysRevD.100.023015
[499] Siegel, DM; Ciolfi, R.; Harte, AI; Rezzolla, L., Magnetorotational instability in relativistic hypermassive neutron stars, Phys. Rev., D87, 12, 121302 (2013) · doi:10.1103/PhysRevD.87.121302
[500] Silva, HO; Sotani, H.; Berti, E., Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation, Mon. Not. R. Astron. Soc., 459, 4, 4378-4388 (2016) · doi:10.1093/mnras/stw969
[501] Smartt, SJ, A kilonova as the electromagnetic counterpart to a gravitational-wave source, Nature, 551, 75-79 (2017) · doi:10.1038/nature24303
[502] Soma, S.; Bandyopadhyay, D., Properties of binary components and remnant in GW170817 using equations of state in finite temperature field theory models, Astrophys. J., 890, 139 (2020) · doi:10.3847/1538-4357/ab6a9e
[503] Steiner, AW; Gandolfi, S.; Fattoyev, FJ; Newton, WG, Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal deformabilities, Phys. Rev., C91, 1, 015804 (2015) · doi:10.1103/PhysRevC.91.015804
[504] Steiner, AW; Lattimer, JM; Brown, EF, Neutron star radii, universal relations, and the role of prior distributions, Eur. Phys. J. A, 52, 18 (2016) · doi:10.1140/epja/i2016-16018-1
[505] Steinhoff, J.; Hinderer, T.; Buonanno, A.; Taracchini, A., Dynamical tides in general relativity: effective action and effective-one-body Hamiltonian, Phys. Rev., D94, 10, 104028 (2016) · doi:10.1103/PhysRevD.94.104028
[506] Stovall, K., PALFA discovery of a highly relativistic double neutron star binary, Astrophys. J., 854, 2, L22 (2018) · doi:10.3847/2041-8213/aaad06
[507] Tacik, N., et al.: Binary neutron stars with arbitrary spins in numerical relativity. Phys. Rev. D92(12), 124012 (2015). doi:10.1103/PhysRevD.94.049903. [Erratum: Phys. Rev. D94(4), 049903 (2016). doi:10.1103/PhysRevD.92.124012]
[508] Tagoshi, H.; Mano, S.; Takasugi, E., Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: effects of black hole absorption, Prog. Theor. Phys., 98, 829-850 (1997) · doi:10.1143/PTP.98.829
[509] Takami, K.; Rezzolla, L.; Baiotti, L., Constraining the equation of state of neutron stars from binary mergers, Phys. Rev. Lett., 113, 091104 (2014) · doi:10.1103/PhysRevLett.113.091104
[510] Takami, K.; Rezzolla, L.; Baiotti, L., Spectral properties of the post-merger gravitational-wave signal from binary neutron stars, Phys. Rev., D91, 6, 064001 (2015) · doi:10.1103/PhysRevD.91.064001
[511] Tanaka, M., Kilonova/macronova emission from compact binary mergers, Adv. Astron., 2016, 6341974 (2016) · doi:10.1155/2016/6341974
[512] Taracchini, A., Buonanno, A., Hughes, S.A., Khanna, G.: Modeling the horizon-absorbed gravitational flux for equatorial-circular orbits in Kerr spacetime. Phys. Rev. D88, 044001 (2013). doi:10.1103/PhysRevD.88.109903. [Erratum: Phys. Rev. D88(10), 109903 (2013). doi:10.1103/PhysRevD.88.044001]
[513] Taracchini, A.; Buonanno, A.; Pan, Y.; Hinderer, T.; Boyle, M., Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev., D89, 6, 061502 (2014) · doi:10.1103/PhysRevD.89.061502
[514] Taracchini, A.; Pan, Y.; Buonanno, A.; Barausse, E.; Boyle, M., Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms, Phys. Rev., D86, 024011 (2012) · doi:10.1103/PhysRevD.86.024011
[515] Teukolsky, S.A., Press, W.H.: Perturbations of a rotating black hole. III—Interaction of the hole with gravitational and electromagnet IC radiation. Astrophys. J. 193, 443-461 (1974). doi:10.1086/153180
[516] Thierfelder, M.; Bernuzzi, S.; Brügmann, B., Numerical relativity simulations of binary neutron stars, Phys. Rev., D84, 044012 (2011) · doi:10.1103/PhysRevD.84.044012
[517] Thompson, JE; Fauchon-Jones, E.; Khan, S.; Nitoglia, E.; Pannarale, F.; Dietrich, T.; Hannam, M., Modeling the gravitational wave signature of neutron star black hole coalescences, Phys. Rev., D101, 124059 (2020) · doi:10.1103/PhysRevD.101.124059
[518] Thorne, KS, Multipole expansions of gravitational radiation, Rev. Mod. Phys., 52, 299-339 (1980) · doi:10.1103/RevModPhys.52.299
[519] Thorne, KS, Tidal stabilization of rigidly rotating, fully relativistic neutron stars, Phys. Rev., D58, 124031 (1998) · doi:10.1103/PhysRevD.58.124031
[520] Thorne, K.S., Campolattaro, A.: Non-radial pulsation of general-relativistic stellar models. I. analytic analysis for \(\text{L} {\>}= 2\). Astrophys. J. 149, 591 (1967). doi:10.1086/149288
[521] Thorne, KS; Hartle, JB, Laws of motion and precession for black holes and other bodies, Phys. Rev., D31, 1815-1837 (1984) · doi:10.1103/PhysRevD.31.1815
[522] Tichy, W., Black hole evolution with the BSSN system by pseudo-spectral methods, Phys. Rev., D74, 084005 (2006) · doi:10.1103/PhysRevD.74.084005
[523] Tichy, W., A New numerical method to construct binary neutron star initial data, Class. Quant. Grav., 26, 175018 (2009) · Zbl 1176.83023 · doi:10.1088/0264-9381/26/17/175018
[524] Tichy, W., Long term black hole evolution with the BSSN system by pseudo-spectral methods, Phys. Rev., D80, 104034 (2009) · doi:10.1103/PhysRevD.80.104034
[525] Tichy, W.; Rashti, A.; Dietrich, T.; Dudi, R.; Brügmann, B., Constructing binary neutron star initial data with high spins, high compactnesses, and high mass ratios, Phys. Rev., D100, 12, 124046 (2019) · doi:10.1103/PhysRevD.100.124046
[526] Tsang, CY; Brown, BA; Fattoyev, FJ; Lynch, WG; Tsang, MB, Constraints on Skyrme equations of state from doubly magic nuclei, ab-initio calculations of low-density neutron matter, and neutron stars, Phys. Rev., C100, 6, 062801 (2019) · doi:10.1103/PhysRevC.100.062801
[527] Tsang, D., Shattering flares during close encounters of neutron stars, Astrophys. J., 777, 103 (2013) · doi:10.1088/0004-637X/777/2/103
[528] Tsang, D.; Read, JS; Hinderer, T.; Piro, AL; Bondarescu, R., Resonant shattering of neutron star crusts, Phys. Rev. Lett., 108, 1, 011102 (2012) · doi:10.1103/PhysRevLett.108.011102
[529] Tsang, KW; Dietrich, T.; Van Den Broeck, C., Modeling the postmerger gravitational wave signal and extracting binary properties from future binary neutron star detections, Phys. Rev., D100, 4, 044047 (2019) · doi:10.1103/PhysRevD.100.044047
[530] Tsatsin, P.; Marronetti, P., Initial data for neutron star binaries with arbitrary spins, Phys. Rev., D88, 064060 (2013) · doi:10.1103/PhysRevD.88.064060
[531] Tsokaros, A.; Mundim, BC; Galeazzi, F.; Rezzolla, L.; Uryū, K., Initial-data contribution to the error budget of gravitational waves from neutron-star binaries, Phys. Rev., D94, 4, 044049 (2016) · doi:10.1103/PhysRevD.94.044049
[532] Tsokaros, A.; Ruiz, M.; Paschalidis, V.; Shapiro, SL; Uryō, K., Effect of spin on the inspiral of binary neutron stars, Phys. Rev., D100, 2, 024061 (2019) · doi:10.1103/PhysRevD.100.024061
[533] Turner, M., Tidal generation of gravitational waves from orbiting Newtonian stars, I-General formalism. Astrophys. J., 216, 914-929 (1977) · doi:10.1086/155536
[534] Uchikata, N.; Yoshida, S., Slowly rotating thin shell gravastars, Class. Quant. Grav., 33, 2, 025005 (2016) · Zbl 1332.83028 · doi:10.1088/0264-9381/33/2/025005
[535] Vallisneri, M., Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star-black-hole binaries, Phys. Rev. Lett., 84, 3519-3522 (2000) · doi:10.1103/PhysRevLett.84.3519
[536] Van Oeveren, ED; Friedman, JL, Upper limit set by causality on the tidal deformability of a neutron star, Phys. Rev., D95, 8, 083014 (2017) · doi:10.1103/PhysRevD.95.083014
[537] Veitch, J.; Vecchio, A., Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network, Phys. Rev., D81, 062003 (2010) · doi:10.1103/PhysRevD.81.062003
[538] Veitch, J., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev., D91, 4, 042003 (2015) · doi:10.1103/PhysRevD.91.042003
[539] Vick, M.; Lai, D., Tidal effects in eccentric coalescing neutron star binaries, Phys. Rev., D100, 6, 063001 (2019) · doi:10.1103/PhysRevD.100.063001
[540] Vines, J., Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings, Class. Quant. Grav., 35, 8, 084002 (2018) · Zbl 1409.83116 · doi:10.1088/1361-6382/aaa3a8
[541] Vines, J.; Flanagan, EE; Hinderer, T., Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals, Phys. Rev., D83, 084051 (2011) · doi:10.1103/PhysRevD.83.084051
[542] Vines, J.; Steinhoff, J.; Buonanno, A., Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev., D99, 6, 064054 (2019) · doi:10.1103/PhysRevD.99.064054
[543] Vines, JE; Flanagan, EE, Post-1-Newtonian quadrupole tidal interactions in binary systems, Phys. Rev., D88, 024046 (2010) · doi:10.1103/PhysRevD.88.024046
[544] Wade, L.; Creighton, JDE; Ochsner, E.; Lackey, BD; Farr, BF; Littenberg, TB; Raymond, V., Systematic and statistical errors in a Bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors, Phys. Rev., D89, 10, 103012 (2014) · doi:10.1103/PhysRevD.89.103012
[545] Wanajo, S.; Sekiguchi, Y.; Nishimura, N.; Kiuchi, K.; Kyutoku, K.; Shibata, M., Production of all the \(r\)-process nuclides in the dynamical ejecta of neutron star mergers, Astrophys. J., 789, L39 (2014) · doi:10.1088/2041-8205/789/2/L39
[546] Wei, JB; Figura, A.; Burgio, GF; Chen, H.; Schulze, HJ, Neutron star universal relations with microscopic equations of state, J. Phys., G46, 3, 034001 (2019) · doi:10.1088/1361-6471/aaf95c
[547] Weih, LR; Hanauske, M.; Rezzolla, L., Postmerger gravitational-wave signatures of phase transitions in binary mergers, Phys. Rev. Lett., 124, 171103 (2020) · doi:10.1103/PhysRevLett.124.171103
[548] Wolter, H., The high-density symmetry energy in heavy-ion collisions and compact stars, Universe, 4, 6, 72 (2018) · doi:10.3390/universe4060072
[549] Xu, W.; Lai, D., Resonant tidal excitation of oscillation modes in merging binary neutron stars: inertial-gravity modes, Phys. Rev., D96, 8, 083005 (2017) · doi:10.1103/PhysRevD.96.083005
[550] Yagi, K., Multipole Love relations, Phys. Rev., D89, 4, 043011 (2014) · doi:10.1103/PhysRevD.89.043011
[551] Yagi, K.; Kyutoku, K.; Pappas, G.; Yunes, N.; Apostolatos, TA, Effective no-hair relations for neutron stars and quark stars: relativistic results, Phys. Rev., D89, 12, 124013 (2014) · doi:10.1103/PhysRevD.89.124013
[552] Yagi, K.; Yunes, N., I-Love-Q. Science, 341, 365 (2013) · doi:10.1126/science.1236462
[553] Yagi, K.; Yunes, N., I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics, Phys. Rev., D88, 2, 023009 (2013) · doi:10.1103/PhysRevD.88.023009
[554] Yagi, K., Yunes, N.: Binary Love relations. Class. Quant. Grav. 33(13), 13LT01 (2016). doi:10.1088/0264-9381/33/13/13LT01 · Zbl 1338.83163
[555] Yagi, K.; Yunes, N., Approximate universal relations among tidal parameters for neutron star binaries, Class. Quant. Grav., 34, 1, 015006 (2017) · Zbl 1354.85004 · doi:10.1088/1361-6382/34/1/015006
[556] Yamazaki, T.; Harada, M., Constraint to chiral invariant masses of nucleons from GW170817 in an extended parity doublet model, Phys. Rev., C100, 2, 025205 (2019) · doi:10.1103/PhysRevC.100.025205
[557] Yang, H., Inspiralling eccentric binary neutron stars: orbital motion and tidal resonance, Phys. Rev., D100, 6, 064023 (2019) · doi:10.1103/PhysRevD.100.064023
[558] Yang, H.; East, WE; Paschalidis, V.; Pretorius, F.; Mendes, RFP, Evolution of highly eccentric binary neutron stars including tidal effects, Phys. Rev., D98, 4, 044007 (2018) · doi:10.1103/PhysRevD.98.044007
[559] Yazadjiev, SS; Doneva, DD; Kokkotas, KD, Tidal Love numbers of neutron stars in \(f(R)\) gravity, Eur. Phys. J. C, 78, 10, 818 (2018) · doi:10.1140/epjc/s10052-018-6285-z
[560] Yu, H.; Weinberg, NN, Resonant tidal excitation of superfluid neutron stars in coalescing binaries, Mon. Not. R. Astron. Soc., 464, 3, 2622-2637 (2017) · doi:10.1093/mnras/stw2552
[561] Zacchi, A.; Schaffner-Bielich, J., Implications of the fermion vacuum term in the extended SU(3) quark meson model on compact star properties, Phys. Rev., D100, 12, 123024 (2019) · doi:10.1103/PhysRevD.100.123024
[562] Zahn, JP, Forced oscillations in close binaries, The adiabatic approximation. Astron. Astrophys., 4, 452 (1970)
[563] Zahn, JP, Tidal friction in close binary stars, Astron. Astrophys., 57, 383-394 (1977)
[564] Zappa, F.; Bernuzzi, S.; Radice, D.; Perego, A.; Dietrich, T., Gravitational-wave luminosity of binary neutron stars mergers, Phys. Rev. Lett., 120, 11, 111101 (2018) · doi:10.1103/PhysRevLett.120.111101
[565] Zhang, K.; Hirayama, T.; Luo, LW; Lin, FL, Compact star of holographic nuclear matter and GW170817, Phys. Lett., B801, 135176 (2020) · doi:10.1016/j.physletb.2019.135176
[566] Zhang, NB; Li, BA, Delineating effects of nuclear symmetry energy on the radii and tidal polarizabilities of neutron stars, J. Phys., G46, 1, 014002 (2019) · doi:10.1088/1361-6471/aaef54
[567] Zhang, NB; Li, BA, Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves, Eur. Phys. J. A, 55, 39 (2019) · doi:10.1140/epja/i2019-12700-0
[568] Zhang, NB; Li, BA; Xu, J., Combined constraints on the equation of state of dense neutron-rich matter from terrestrial nuclear experiments and observations of neutron stars, Astrophys. J., 859, 2, 90 (2018) · doi:10.3847/1538-4357/aac027
[569] Zhang, Y.; Liu, P.; Hu, J., The properties of neutron star from realistic nucleon-nucleon interaction within relativistic Hartree-Fock model, Int. J. Mod. Phys., E28, 11, 1950094 (2020) · doi:10.1142/S0218301319500940
[570] Zhao, T.; Lattimer, JM, Tidal deformabilities and neutron star mergers, Phys. Rev., D98, 6, 063020 (2018) · doi:10.1103/PhysRevD.98.063020
[571] Zhou, EP; Zhou, X.; Li, A., Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario, Phys. Rev., D97, 8, 083015 (2018) · doi:10.1103/PhysRevD.97.083015
[572] Zhu, ZY; Zhou, EP; Li, A., Neutron star equation of state from the quark level in light of GW170817, Astrophys. J., 862, 2, 98 (2018) · doi:10.3847/1538-4357/aacc28
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.