×

Overcomplete sets in non-separable Banach spaces. (English) Zbl 1456.46020

In [Math. Scand. 6, 189–199 (1958; Zbl 0088.08502)], V. Klee introduced the notion of {overcomplete sequence}, meaning a sequence every subsequence of which is linearly dense. It is well known that overcomplete sequences exist in any separable Banach space. A sequence is called {almost overcomplete} whenever the closed linear span of each of its subsequences has finite codimension. It was proved in [V. P. Fonf and C. Zanco, J. Math. Anal. Appl. 420, No. 1, 94–101 (2014; Zbl 1310.46015)] that every {almost overcomplete bounded sequence} has to be relatively norm-compact. A simpler proof of this result is given at the end of this paper.
The authors introduce the notion of overcomplete set in a natural way. Unlike the separable case, it is proved that, if \(\operatorname {dens} X \geq \omega_2\), then \(X\) contains no overcomplete set, as well as that \(\ell_1(\Gamma)\) does not contain any overcomplete set whenever \(\Gamma\) is uncountable. On the other hand, under (CH) it is proved that every Banach space \(X\) such that \(\operatorname{dens} X = \operatorname{dens} X^*=\omega_1\) contains an overcomplete set. Recently, \textit{P. Koszmider} proved that in ZFC all WLD Banach spaces of density \(\omega_1\) admit overcomplete sets [``On the existence of overcomplete sets in some classical nonseparable Banach spaces'', Preprint (2020), arXiv:2006.00806]. Certainly, overcomplete sets in non-separable Banach spaces fail to be relatively norm-compact (unlike the aforementioned Fonf-Zanco result). However, it is proved that, under (CH), every WCG Banach space with density \(\omega_1\) contains a relatively weakly compact overcomplete set. The paper is well written and a joy to read\)

MSC:

46B26 Nonseparable Banach spaces
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
46A35 Summability and bases in topological vector spaces

References:

[1] Albiac, Fernando; Kalton, Nigel J., Topics in Banach space theory, Graduate Texts in Mathematics 233, xii+373 pp. (2006), Springer, New York · Zbl 1094.46002
[2] Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. of Math. (2), 88, 35-46 (1968) · Zbl 0164.14903 · doi:10.2307/1970554
[3] Argyros, S.; Mercourakis, S., On weakly Lindel\"{o}f Banach spaces, Rocky Mountain J. Math., 23, 2, 395-446 (1993) · Zbl 0797.46009 · doi:10.1216/rmjm/1181072569
[4] Bessaga, Czes\l aw; Pe\l czy\'{n}ski, Aleksander, Selected topics in infinite-dimensional topology, 353 pp. (1975), Monografie Matematyczne, Tom 58, [Mathematical Monographs, Vol. 58], PWN-Polish Scientific Publishers, Warsaw · Zbl 0304.57001
[5] Bra\ss, Helmut, Grundmengen in normierten R\"{a}umen. On Approximation Theory (Proceedings of Conference in Oberwolfach, 1963), 172-178 (1964), Birkh\"{a}user, Basel · Zbl 0187.37502
[6] Cariello, Daniel; Seoane-Sep\'{u}lveda, Juan B., Basic sequences and spaceability in \(\ell_p\) spaces, J. Funct. Anal., 266, 6, 3797-3814 (2014) · Zbl 1295.46014 · doi:10.1016/j.jfa.2013.12.011
[7] Chalendar, I.; Fricain, E.; Partington, J. R., Overcompleteness of sequences of reproducing kernels in model spaces, Integral Equations Operator Theory, 56, 1, 45-56 (2006) · Zbl 1113.46021 · doi:10.1007/s00020-005-1413-1
[8] Enflo, Per H.; Gurariy, Vladimir I.; Seoane-Sep\'{u}lveda, Juan B., Some results and open questions on spaceability in function spaces, Trans. Amer. Math. Soc., 366, 2, 611-625 (2014) · Zbl 1297.46022 · doi:10.1090/S0002-9947-2013-05747-9
[9] Erd\H{o}s, Paul; Hajnal, Andr\'{a}s; M\'{a}t\'{e}, Attila; Rado, Richard, Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics 106, 347 pp. (1984), North-Holland Publishing Co., Amsterdam · Zbl 0573.03019
[10] Fabian, Mari\'{a}n; Habala, Petr; H\'{a}jek, Petr; Montesinos, Vicente; Zizler, V\'{a}clav, Banach space theory, CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC, xiv+820 pp. (2011), Springer, New York · Zbl 1229.46001 · doi:10.1007/978-1-4419-7515-7
[11] Fonf, Vladimir P.; Zanco, Clemente, Almost overcomplete and almost overtotal sequences in Banach spaces, J. Math. Anal. Appl., 420, 1, 94-101 (2014) · Zbl 1310.46015 · doi:10.1016/j.jmaa.2014.05.045
[12] Fonf, Vladimir P.; Somaglia, Jacopo; Troyanski, Stanimir; Zanco, Clemente, Almost overcomplete and almost overtotal sequences in Banach spaces II, J. Math. Anal. Appl., 434, 1, 84-92 (2016) · Zbl 1346.46009 · doi:10.1016/j.jmaa.2015.09.002
[13] Gurariy, Vladimir I.; Lusky, Wolfgang, Geometry of M\"{u}ntz spaces and related questions, Lecture Notes in Mathematics 1870, xiv+172 pp. (2005), Springer-Verlag, Berlin · Zbl 1094.46003 · doi:10.1007/11551621
[14] H\'{a}jek, Petr; Montesinos Santaluc\'{\i}a, Vicente; Vanderwerff, Jon; Zizler, V\'{a}clav, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC 26, xviii+339 pp. (2008), Springer, New York · Zbl 1136.46001
[15] Hajnal, A., Proof of a conjecture of S. Ruziewicz, Fund. Math., 50, 123-128 (1961/62) · Zbl 0100.28003 · doi:10.4064/fm-50-2-123-128
[16] Jech, Thomas, Set theory, the third millennium edition, revised and expanded, Springer Monographs in Mathematics, xiv+769 pp. (2003), Springer-Verlag, Berlin · Zbl 1007.03002
[17] K\polhk akol, Jerzy; Kubi\'{s}, Wies\l aw; L\'{o}pez-Pellicer, Manuel, Descriptive topology in selected topics of functional analysis, Developments in Mathematics 24, xii+493 pp. (2011), Springer, New York · Zbl 1231.46002 · doi:10.1007/978-1-4614-0529-0
[18] Klee, Victor, On the Borelian and projective types of linear subspaces, Math. Scand., 6, 189-199 (1958) · Zbl 0088.08502 · doi:10.7146/math.scand.a-10543
[19] Koppelberg, Sabine, Boolean algebras as unions of chains of subalgebras, Algebra Universalis, 7, 2, 195-203 (1977) · Zbl 0358.06033 · doi:10.1007/BF02485429
[20] Koppelberg, Sabine, Handbook of Boolean algebras. Vol. 1, xx+312l pp. (1989), edited by J. Donald Monk and Robert Bonnet, North-Holland Publishing Co., Amsterdam · Zbl 0671.06001
[21] Kosz Piotr Koszmider, On the existence of overcomplete sets in some classical nonseparable Banach spaces, 2006.00806, 2020.
[22] Mil\cprime man, V. D., Geometric theory of Banach spaces. I. Theory of basic and minimal systems, Uspehi Mat. Nauk, 25, 3 (153), 113-174 (1970) · Zbl 0198.16503
[23] Rudin, Walter, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8, 39-42 (1957) · Zbl 0077.31103 · doi:10.2307/2032807
[24] Singer, Ivan, Bases in Banach spaces. II, viii+880 pp. (1981), Editura Academiei Republicii Socialiste Rom\^ania, Bucharest; Springer-Verlag, Berlin-New York · Zbl 0467.46020
[25] Terenzi, Paolo, Sequences in Banach spaces. Banach space theory and its applications, Bucharest, 1981, Lecture Notes in Math. 991, 259-271 (1983), Springer, Berlin-New York · Zbl 0514.46010
[26] Terenzi, Paolo, Stability properties in Banach spaces, Riv. Mat. Univ. Parma (4), 8, 123-134 (1983) (1982) · Zbl 0517.46004
[27] Terenzi, Paolo, On the structure of overfilling sequences of a Banach space, Riv. Mat. Univ. Parma (4), 6, 425-441 (1981) (1980) · Zbl 0465.46006
[28] Terenzi, Paolo, On the structure, in a Banach space, of the sequences without an infinite basic subsequence, Boll. Un. Mat. Ital. B (5), 15, 1, 32-48 (1978) · Zbl 0373.46026
[29] Williams, Neil H., Combinatorial set theory, Studies in Logic and the Foundations of Mathematics 91, xi+208 pp. (1977), North-Holland Publishing Co., Amsterdam · Zbl 0362.04008
[30] Zanco C. Zanco, personal communication with the authors, November 8, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.