×

Topological Ramsey numbers and countable ordinals. (English) Zbl 1423.03160

Caicedo, Andrés Eduardo (ed.) et al., Foundations of mathematics. Logic at Harvard. Essays in honor of W. Hugh Woodin’s 60th birthday. Proceedings of the Logic at Harvard conference, Harvard University, Cambridge, MA, USA, March 27–29, 2015. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 690, 87-120 (2017).
Summary: We study the topological version of the partition calculus in the setting of countable ordinals. Let \(\alpha \) and \(\beta \) be ordinals and let \(k\) be a positive integer. We write \(\beta \rightarrow _{\mathrm{top}}(\alpha ,k)^2\) to mean that, for every red-blue coloring of the collection of 2-sized subsets of \(\beta \), there is either a red-homogeneous set homeomorphic to \(\alpha \) or a blue-homogeneous set of size \(k\). The least such \(\beta \) is the topological Ramsey number \(R^{\mathrm{top}}(\alpha ,k)\).
We prove a topological version of the Erdős-Milner theorem, namely that \(R^{\mathrm{top}}(\alpha ,k)\) is countable whenever \(\alpha \) is countable. More precisely, we prove that \(R^{\mathrm{top}}(\omega ^{\omega ^\beta },k+1)\leq \omega ^{\omega ^{\beta \cdot k}}\) for all countable ordinals \(\beta \) and finite \(k\). Our proof is modeled on a new easy proof of a weak version of the Erdős-Milner theorem that may be of independent interest.
We also provide more careful upper bounds for certain small values of \(\alpha \), proving among other results that \(R^{\mathrm{top}}(\omega +1,k+1)=\omega ^k+1\), \(R^{\mathrm{top}}(\alpha ,k)< \omega ^\omega \) whenever \(\alpha <\omega ^2\), \(R^{\mathrm{top}}(\omega ^2,k)\leq \omega ^\omega \) and \(R^{\mathrm{top}}(\omega ^2+1,k+2)\leq \omega ^{\omega \cdot k}+1\) for all finite \(k\).
Our computations use a variety of techniques, including a topological pigeonhole principle for ordinals, considerations of a tree ordering based on the Cantor normal form of ordinals, and some ultrafilter arguments.
For the entire collection see [Zbl 1367.03010].

MSC:

03E02 Partition relations
03E10 Ordinal and cardinal numbers
05D10 Ramsey theory
54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets)

References:

[1] Baumgartner, James E., Partition relations for countable topological spaces, J. Combin. Theory Ser. A, 43, 2, 178-195 (1986) · Zbl 0647.05005 · doi:10.1016/0097-3165(86)90059-2
[2] A. E. Caicedo. Teoria de Ramsey de ordinales contables muy pequenos. Submitted. Available at https://andrescaicedo.wordpress.com/papers/, 2014.
[3] A. E. Caicedo. Partition calculus of small countable ordinals. A survey of results of Haddad and Sabbagh. Preprint, 2015.
[4] Erd\H os, P.; Milner, E. C., A theorem in the partition calculus, Canad. Math. Bull., 15, 501-505 (1972) · Zbl 0271.04003 · doi:10.4153/CMB-1972-088-1
[5] Erd\H os, P.; Rado, R., A problem on ordered sets, J. London Math. Soc., 28, 426-438 (1953) · Zbl 0051.04003 · doi:10.1112/jlms/s1-28.4.426
[6] Erd\H os, P.; Rado, R., A partition calculus in set theory, Bull. Amer. Math. Soc., 62, 427-489 (1956) · Zbl 0071.05105 · doi:10.1090/S0002-9904-1956-10036-0
[7] Erd\H os, P.; Rado, R., Partition relations and transitivity domains of binary relations, J. London Math. Soc., 42, 624-633 (1967) · Zbl 0204.00905 · doi:10.1112/jlms/s1-42.1.624
[8] Flum, J{\`“o}rg; Mart{\'”{\i }}nez, Juan Carlos, On topological spaces equivalent to ordinals, J. Symbolic Logic, 53, 3, 785-795 (1988) · Zbl 0655.03026 · doi:10.2307/2274571
[9] Friedman, Harvey, On closed sets of ordinals, Proc. Amer. Math. Soc., 43, 190-192 (1974) · Zbl 0299.04003
[10] Hajnal, A., Some results and problems on set theory, Acta Math. Acad. Sci. Hungar., 11, 277-298 (1960) · Zbl 0106.00901
[11] Hajnal, A., Remarks on the theorem of W. P. Hanf, Fund. Math., 54, 109-113 (1964) · Zbl 0119.01505
[12] Hilton, Jacob, The topological pigeonhole principle for ordinals, J. Symb. Log., 81, 2, 662-686 (2016) · Zbl 1370.03062 · doi:10.1017/jsl.2015.45
[13] Hajnal, A.; Juh{\'a}sz, I.; Weiss, W., Partitioning the pairs and triples of topological spaces, Topology Appl., 35, 2-3, 177-184 (1990) · Zbl 0703.04001 · doi:10.1016/0166-8641(90)90103-9
[14] Hajnal, Andr{\'a}s; Larson, Jean A., Partition relations. Handbook of set theory. Vols. 1, 2, 3, 129-213 (2010), Springer, Dordrecht · Zbl 1198.03048 · doi:10.1007/978-1-4020-5764-9\_3
[15] Haddad, Labib; Sabbagh, Gabriel, Sur une extension des nombres de Ramsey aux ordinaux, C. R. Acad. Sci. Paris S\'er. A-B, 268, A1165-A1167 (1969) · Zbl 0181.30302
[16] Haddad, Labib; Sabbagh, Gabriel, Calcul de certains nombres de Ramsey g\'en\'eralis\'es, C. R. Acad. Sci. Paris S\'er. A-B, 268, A1233-A1234 (1969) · Zbl 0181.30303
[17] Haddad, Labib; Sabbagh, Gabriel, Nouveaux r\'esultats sur les nombres de Ramsey g\'en\'eralis\'es, C. R. Acad. Sci. Paris S\'er. A-B, 268, A1516-A1518 (1969) · Zbl 0181.30304
[18] Jones, Albin L., A short proof of a partition relation for triples, Electron. J. Combin., 7, Research Paper 24, 9 pp. (2000) · Zbl 0945.03067
[19] Albin L. Jones. Even more on partitioning triples of countable ordinals. Proc. Amer. Math. Soc., to appear. · Zbl 1110.03033
[20] V.Kieftenbeld and B.Lowe. A classification of ordinal topologies. Unpublished. Available at https://www.illc.uva.nl/Research/Publications/PP-2006-57.text.pdf, 2006.
[21] Kruse, Arthur H., A note on the partition calculus of P. Erd\H os and R. Rado, J. London Math. Soc., 40, 137-148 (1965) · Zbl 0163.25002
[22] Laver, R., Partition relations for uncountable cardinals \(\leq 2^{\aleph_0} \). Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erd\H os on his 60th birthday), Vol. II, 1029-1042. Colloq. Math. Soc. Jan\'os Bolyai, Vol. 10 (1975), North-Holland, Amsterdam · Zbl 0309.02071
[23] Larson, Jean A.; Mitchell, William J., On a problem of Erd\H os and Rado, Ann. Comb., 1, 3, 245-252 (1997) · Zbl 0895.05043 · doi:10.1007/BF02558478
[24] O. Mermelstein. Calculating the closed ordinal Ramsey number \(R^{cl}(2,3)^2\). Preprint. Available at https://arxiv.org/abs/1702.03878, 2017. · Zbl 1475.03093
[25] Milner, E. C., A finite algorithm for the partition calculus. Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress, Lakehead Univ., Thunder Bay, Ont., 1971, 117-128 (1971), Lakehead Univ., Thunder Bay, Ont. · Zbl 0384.05011
[26] Pi{\~n}a, C., A topological Ramsey classification of countable ordinals, Acta Math. Hungar., 147, 2, 477-509 (2015) · Zbl 1374.03030 · doi:10.1007/s10474-014-0413-5
[27] S.Rosenberg. Infinite closed monochromatic subsets of a metric space. Preprint. Available at https://arxiv.org/abs/1508.02366, 2015.
[28] Schipperus, Rene, Countable partition ordinals, Ann. Pure Appl. Logic, 161, 10, 1195-1215 (2010) · Zbl 1225.03058 · doi:10.1016/j.apal.2009.12.007
[29] Schipperus, Ren{\'e}, The topological Baumgartner-Hajnal theorem, Trans. Amer. Math. Soc., 364, 8, 3903-3914 (2012) · Zbl 1291.03080 · doi:10.1090/S0002-9947-2012-04990-7
[30] Sierpi{\'n}ski, Waclaw, Sur un probl\`“eme de la th\'”eorie des relations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 2, 3, 285-287 (1933) · Zbl 0007.09702
[31] Specker, Ernst, Teilmengen von Mengen mit Relationen, Comment. Math. Helv., 31, 302-314 (1957) · Zbl 0080.03703
[32] Todor{\v{c}}evi{\'c}, Stevo, Forcing positive partition relations, Trans. Amer. Math. Soc., 280, 2, 703-720 (1983) · Zbl 0532.03023 · doi:10.2307/1999642
[33] S.Todorcevic. A partition property of spaces with point-countable bases. Unpublished. 1 pg., June 1996.
[34] Weiss, William, Partitioning topological spaces. Mathematics of Ramsey theory, Algorithms Combin. 5, 154-171 (1990), Springer, Berlin · Zbl 0755.54002 · doi:10.1007/978-3-642-72905-8\_11
[35] Weinert, Thilo V., Idiosynchromatic poetry, Combinatorica, 34, 6, 707-742 (2014) · Zbl 1340.03013 · doi:10.1007/s00493-011-2980-1
[36] Williams, Neil H., Combinatorial set theory, Studies in Logic and the Foundations of Mathematics 91, xi+208 pp. (1977), North-Holland Publishing Co., Amsterdam · Zbl 0362.04008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.