×

Multi-objective optimization and decision visualization of batch stirred tank reactor based on spherical catalyst particles. (English) Zbl 1429.92102

Summary: This paper presents a Bayesian approach rooted algorithm oriented to the properties of multi-objective optimization problems. The performance of the developed algorithm is compared with several other multi-objective optimization algorithms. The approach is applied to the multiobjective optimization of a batch stirred tank reactor based on spherical catalyst microreactors. The microbioreactors are computationally modeled by a two-compartment model based on reaction-diffusion equations containing a nonlinear term related to the Michaelis-Menten enzyme kinetics. A two-stage visualization procedure based on the multi-dimensional scaling is proposed and applied for the visualization of trade-off solutions and for the selection of favorable configurations of the bioreactor.

MSC:

92C75 Biotechnology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] I. Andrés, Enzyme Biocatalysis: Principles and Applications, Springer, Dordrecht, 2008.
[2] R. Baronas, F. Ivanauskas, J. Kulys, Mathematical modeling of biosensors based on an array of enzyme microreactors, Sensors, 6(4):453-465, 2006.
[3] R. Baronas, J. Kulys, L. Petkeviˇcius, Modelling the enzyme catalysed substrate conversion in a microbioreactor acting in continuous flow mode, Nonlinear Anal. Model. Control, 23(3):437- 456, 2018. · Zbl 1416.92080
[4] R. Baronas, J. Kulys, L. Petkeviˇcius, Computational modeling of batch stirred tank reactor based on spherical catalyst particles, J. Math. Chem., 57(1):327-342, 2019. · Zbl 1406.92264
[5] R. Baronas, A. Žilinskas, L. Litvinas, Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization,Electrochim. Acta, 211:586-594, 2016.
[6] L.A. Belfiore, Transport Phenomena for Chemical Reactor Design, John Wiley & Sons, Hoboken, NJ, 2003.
[7] C.M. Bidabehere, J.R. García, U. Sedran, Transient effectiveness factor in porous catalyst particles. Application to kinetic studies with batch reactors, Chem. Eng. Res. Des., 118:41-50, 2017.
[8] D. Britz, R. Baronas, E. Gaidamauskait˙e, F. Ivanauskas, Further comparisons of finite difference schemes for computational modelling of biosensors, Nonlinear Anal. Model. Control, 14(4):419-433, 2009. · Zbl 1300.93031
[9] J. Calvin, G. Gimbutien˙e, W.O. Phillips, A. Žilinskas, On convergence rate of a rectangular partition based global optimization algorithm, J. Glob. Optim., 71:165-191, 2018. · Zbl 1402.90125
[10] A. Darvishi, A. Bakhtyari, M.R. Rahimpour, A sensitivity analysis and multi-objective optimization to enhance ethylene production by oxidative dehydrogenation of ethane in a membraneassisted reactor, Chin. J. Chem. Eng., 26(9):1879-1895, 2018.
[11] M.E. Davis, R.J. Davis, Fundamentals of Chemical Reaction Engineering, McGraw-Hill, New York, 2003.
[12] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, 2009. · Zbl 1165.90019
[13] P.M. Doran, Bioprocess Engineering Principles, 2nd ed., Academic Press, Waltham, MA, 2013.
[14] F. Ebrahimi, E. Kolehmainen, A. Laari, H. Haario, D. Semenov, I. Turunen, Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling, Chem. Eng. Sci., 71:531-538, 2012.
[15] B. Godongwana, Effectiveness factors and conversion in a biocatalytic membrane reactor, PLoS One, 11(4):e0153000, 2016.
[16] I. Hashem, D. Telen, P. Nimmegeers, F. Logist, J.Van Impe, A novel algorithm for fast representation of a Pareto front with adaptive resolution: Application to multi-objective optimization of a chemical reactor, Comput. Chem. Eng., 106:544-558, 2017.
[17] C-Y. Hsu, B-S. Chen, Systematic design of a metal ion biosensor: A multi-objective optimization approach, PLoS One, 11(11):e0165911, 2016.
[18] J. Iqbal, S. Iqbala, C.E. Müller, Advances in immobilized enzyme microbioreactors in capillary electrophoresis, Analyst, 138(11):3104-3116, 2013.
[19] J. Ju, Y. Han, S. Kim, Design optimization of structural parameters for highly sensitive photonic crystal label-free biosensors, Sensors, 13(3):3232-3241, 2018.
[20] P. Koch, T. Wagner, M. Emmerich, T. Bäck, W. Konen, Efficient multi-criteria optimization on noisy machine learning problems, Appl. Soft Comput., 29:357-370, 2015.
[21] K.F. Koledina, S.N. Koledin, A.P. Karpenko, I.M. Gubaydullin, M.K. Vovdenko,Multiobjective optimization of chemical reaction conditions based on a kinetic model, J. Math. Chem., 57:484-493, 2019. · Zbl 1414.92235
[22] F. Logist, P. M. M. Van Erdeghem, J. F. Van Impe, Efficient deterministic multiple objective optimal control of (bio)chemical processes, Chem. Eng. Sci., 64:2527 - 2538, 2009.
[23] M. Maksimovic, A. Al-Ashaab, R. Sulowski, E. Shehab, Knowledge visualization in product development using trade-off curves, in 2012 IEEE International Conference on Industrial Engineering and Engineering Management, 10 to 13 December 2012, Hong Kong, IEEE, 2012, pp. 708-711.
[24] S. Olofsson, M. Mehrian, R. Calandra, L. Geris, M.P. Deisenroth, R. Misener, Bayesian multiobjective optimisation with mixed analytical and black-box functions: Application to tissue engineering, IEEE Trans. Biomed. Eng., 66(3):727-739, 2019.
[25] P. Pardalos, A. Žilinskas, J. Žilinskas, Non-Convex Multi-Objective Optimization, Springer, 2017. · Zbl 1372.90004
[26] N. Patel, N. Padhiyar, Multi-objective dynamic optimization study of fed-batch bio-reactor, Chem. Eng. Res. Des., 119:160-170, 2017.
[27] V. Picheny,Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction, Stat. Comput., 25:1265-1280, 2015. · Zbl 1331.90102
[28] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing,3rd ed., Cambridge Univ. Press, Cambridge, 2007. · Zbl 1132.65001
[29] D. Schäpper, M.N.H.Z. Alam, N. Szita, A. Eliasson Lantz, K. V. Gernaey, Application of microbioreactors in fermentation process development: A review, Anal. Bioanal. Chem., 395(3): 679-695, 2009.
[30] Y. Sergeyev, D. Kvasov, M. Mukhametzhanov, On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget, Sci Rep, 8:453, 2018.
[31] T. Skybová, M. Pˇribyl, P. Hasal, Mathematical model of decolourization in a rotating disc reactor, Biochem. Eng. J., 93:151-165, 2015.
[32] S. Taras, A. Woinaroschy, An interactive multi-objective optimization framework for sustainable design of bioprocesses, Comput. Chem. Eng., 43:10-22, 2012.
[33] D. Telen, F. Logist, E. Van Derlinden, I. Tack, J. Van Impe, Optimal experiment design for dynamic bioprocesses: A multi-objective approach, Chem. Eng. Sci., 78:82-97, 2012.
[34] M. Velkovsky, R. Snider, D.E. Cliffel, J.P. Wikswo, Modeling the measurements of cellular fluxes in microbioreactor devices using thin enzyme electrodes, J. Math. Chem., 49(1):251- 275, 2011. · Zbl 1220.92021
[35] J. Villadsen, J. Nielsen, G. Lidén, Bioreaction Engineering Principles, 3rd ed., Monographs in Electrochemistry, Springer, New York, 2011.
[36] A. Žilinskas, A statistical model-based algorithm for black-box multi-objective optimisation, Int. J. Syst. Sci., 45(1):82-92, 2014. · Zbl 1307.93476
[37] A. Žilinskas, E.S. Fraga, A. Mackut˙e, Data analysis and visualisation for robust multi-criteria process optimisation, Comput. Chem. Eng., 30(6-7):1061-1071, 2006.
[38] A. Žilinskas, J. Žilinskas, Parallel hybrid algorithm for global optimization of problems occurring in MDS based visualization, Comput. Math. Appl., 52(1-2):211-224, 2006. · Zbl 1157.90533
[39] J. Žilinskas, M. Dür, Depth-first simplicial partition for copositivity detection, with an application to maxclique, Optim. Method Softw., 26(3):499-510, 2011. · Zbl 1226.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.