×

Ordered weighted enhancement of preference modeling in the reference point method for multiple criteria optimization. (English) Zbl 1187.90260

Summary: The reference point method is an interactive technique for multiple criteria optimization problems. It is based on the optimization of the scalarizing achievement function built as the augmented max-min aggregation of individual outcomes with respect to the given reference levels. Actually, the worst individual achievement is optimized, but regularized with the term representing the average achievement. In order to avoid inconsistencies caused by the regularization, we apply the ordered weighted averages (OWA) with monotonic weights to combine all the individual achievements. Further, following the concept of the weighted OWA (WOWA), we incorporate the importance weighting of several achievements into the RPM. We show that the resulting WOWA RPM can be quite effectively implemented as an extension of the original constraints and criteria with simple linear inequalities.

MSC:

90C29 Multi-objective and goal programming

Software:

ISAAP
Full Text: DOI

References:

[1] Granat J, Makowski M (2000) ISAAP–interactive specification and analysis of aspiration-based preferences. Eur J Opnl Res 122:469–485 · Zbl 1068.91514 · doi:10.1016/S0377-2217(99)00248-9
[2] Kostreva MM, Ogryczak W (1999) Linear optimization with multiple equitable criteria. RAIRO Oper Res 33:275–297 · Zbl 0961.90059 · doi:10.1051/ro:1999112
[3] Kostreva MM, Ogryczak W, Wierzbicki A (2004) Equitable aggregations and multiple criteria analysis. Eur J Opnl Res 158:362–367 · Zbl 1067.90079 · doi:10.1016/j.ejor.2003.06.010
[4] Lewandowski A, Wierzbicki AP (1989) Aspiration based decision support systems–theory, software and applications. Springer, Berlin · Zbl 0754.00006
[5] Liu X (2006) Some properties of the weighted OWA operator. IEEE Trans Syst Man Cyber B 368:118–127
[6] Llamazares B (2004) Simple and absolute special majorities generated by OWA operators. Eur J Opnl Res 158:707–720 · Zbl 1056.90086 · doi:10.1016/S0377-2217(03)00380-1
[7] Malczewski J, Ogryczak W (1990) An interactive approach to the central facility location problem: locating pediatric hospitals in Warsaw. Geogr Anal 22:244–258 · doi:10.1111/j.1538-4632.1990.tb00208.x
[8] Malczewski J, Ogryczak W (1996) Multiple criteria location problem: 2. Preference–based techniques and intertactive decision support. Environ Plan A 28:69–98 · doi:10.1068/a280069
[9] Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectr 24:193–213 · Zbl 1040.90037 · doi:10.1007/s00291-001-0092-9
[10] Ogryczak W (1994) A goal programming model of the reference point method. Ann Opns Res 51:33–44 · Zbl 0812.90084 · doi:10.1007/BF02032079
[11] Ogryczak W (1997) Preemptive reference point method. In: Climaco J (ed) Multicriteria analysis–proceedings of the XIth international conference on MCDM. Springer, Berlin, pp 156–167
[12] Ogryczak W (2001) On goal programming formulations of the reference point method. J Opnl Res Soc 52:691–698 · Zbl 1179.90301 · doi:10.1057/palgrave.jors.2601141
[13] Ogryczak W (2008) WOWA enhancement of the preference modeling in the reference point method. In: MDAI 2008, LNAI vol 5285, pp 38–49 · Zbl 1178.68634
[14] Ogryczak W, Lahoda S (1992) Aspiration/reservation based decision support–a step beyond goal programming. J MCDA 1:101–117 · Zbl 0847.90089
[15] Ogryczak W, Ruszczyński A (2002) Dual stochastic dominance and related mean-risk models. SIAM J Optim 13:60–78 · Zbl 1022.91017 · doi:10.1137/S1052623400375075
[16] Ogryczak W, Studziński K, Zorychta K (1992) DINAS: a computer-assisted analysis system for multiobjective transshipment problems with facility location. Comp Opns Res 19:637–647 · doi:10.1016/0305-0548(92)90033-2
[17] Ogryczak W, Śliwiński T (2003) On solving linear programs with the ordered weighted averaging objective. Eur J Opnl Res 148:80–91 · Zbl 1037.90045 · doi:10.1016/S0377-2217(02)00399-5
[18] Ogryczak W, Śliwiński T (2007) On Optimization of the importance weighted OWA aggregation of multiple criteria. In: ICCSA 2007, LNCS, vol 4705, pp 804–817
[19] Ogryczak W, Śliwiński T (2007) On decision support under risk by the WOWA optimization. In: ECSQARU 2007, LNAI, vol 4724, pp 779–790 · Zbl 1148.68531
[20] Ogryczak W, Śliwiński T (2009) On efficient WOWA optimization for decision support under risk, Int J Approx Reason 50:915–928 · Zbl 1191.68696
[21] Ogryczak W, Tamir A (2003) Minimizing the sum of the k largest functions in linear time. Inf Proc Lett 85:117–122 · Zbl 1050.68155 · doi:10.1016/S0020-0190(02)00370-8
[22] Ruiz F, Luque M, Cabello JM (2009) A classification of the weighting schemes in reference point procedures for multiobjective programming. J Opnl Res Soc 60:544–553 · Zbl 1163.90739 · doi:10.1057/palgrave.jors.2602577
[23] Torra V (1997) The weighted OWA operator. Int J Intell Syst 12:153–166 · Zbl 0867.68089 · doi:10.1002/(SICI)1098-111X(199702)12:2<153::AID-INT3>3.0.CO;2-P
[24] Torra V, Narukawa Y (2007) Modeling decisions information fusion and aggregation operators. Springer, Berlin
[25] Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Model 3:391–405 · Zbl 0521.90097 · doi:10.1016/0270-0255(82)90038-0
[26] Wierzbicki AP (1986) On completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8:73–87 · Zbl 0592.90084
[27] Wierzbicki AP, Makowski M, Wessels J (2000) Model based decision support methodology with environmental applications. Kluwer, Dordrecht · Zbl 0992.91003
[28] Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cyber 18:183–190 · Zbl 0637.90057 · doi:10.1109/21.87068
[29] Yager RR (1997) On the analytic representation of the Leximin ordering and its application to flexible constraint propagation. Eur J Opnl Res 102:176–192 · Zbl 0948.90112 · doi:10.1016/S0377-2217(96)00217-2
[30] Zimmermann H-J (1996) Fuzzy sets theory and its applications. Kluwer, Dordrecht · Zbl 0845.04006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.