×

Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. (English) Zbl 1295.90005

Summary: We propose a method for time-variant uncertainty analysis, namely, the “non-probabilistic convex model process”, which provides an effective mathematical tool for the analysis of structural dynamic uncertainty when lacking relevant information. In the convex model process, we express the variables at any time with intervals and establish the corresponding auto-covariance function and correlation coefficient function to depict the correlation between variables at different times. We also define several important characteristic parameters for the uni- and bi-dimensional convex model processes, including the mid-value function, variance function, auto-covariance function, and cross-covariance function; we provide the definition for the stationary convex model process and its ergodicity. Then, by combining the convex model process with the first-passage failure mechanism, we propose a non-probabilistic analysis model of structural dynamic reliability and formulate the solving algorithm based on Monte Carlo simulation. Finally, through the analysis of numerical examples, we verify the effectiveness of the convex model process and the model of dynamic reliability analysis proposed in this paper.

MSC:

90B25 Reliability, availability, maintenance, inspection in operations research
74P99 Optimization problems in solid mechanics
60A86 Fuzzy probability
62N05 Reliability and life testing
Full Text: DOI

References:

[1] Dempster, A. P., Upper and lower probabilities induced by multivalued mapping, Ann. Math. Statist., 38, 2, 325-339 (1967) · Zbl 0168.17501
[2] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton University Press: Princeton University Press New Jersey · Zbl 0359.62002
[3] Yager, R. R.; Kacprzyk, J.; Fedrizzi, M., Advances in the Dempster-Shafer theory of evidence (1994), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0816.68110
[6] Ferson, S.; Ginzburg, L. R., Different methods are needed to propagate ignorance and variability, Reliab. Eng. Syst. Saf., 54, 2-3, 133-144 (1996)
[7] Ferson, S.; Ginzburg, L.; Kreinovich, V.; Longpr, L.; Aviles, M., Computing variance for interval data is NP-hard, SIGACT News, 33, 2, 108-118 (2002)
[9] Klir, G. J.; Wierman, M. J., Uncertainty-Based Information-Elements of Generalized Information Theory (1999), Physica-Verlag: Physica-Verlag Heidelberg, New York · Zbl 0935.68023
[10] Klir, G. J., Generalized information theory: aims, results, and open problems, Reliab. Eng. Syst. Saf., 85, 1-3, 21-38 (2004)
[11] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[12] Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 100, 1, 3-28 (1978) · Zbl 0377.04002
[13] Song, Q.; Chissom, B. S., Fuzzy time series and its models, Fuzzy Sets Syst., 54, 3, 269-277 (1993) · Zbl 0792.62087
[14] Song, Q.; Leland, R. P.; Chissom, B. S., Fuzzy stochastic fuzzy time series and its models, Fuzzy Sets Syst., 88, 3, 333-341 (1997) · Zbl 0912.62099
[15] Marano, G. C.; Quaranta, G., Robust optimum criteria for tuned mass dampers in fuzzy environments, Appl. Soft Comput., 9, 4, 1232-1243 (2009)
[16] Ben-Haim, Y.; Elishakoff, I., Convex Models of Uncertainties in Applied Mechanics (1990), Elsevier Science Publisher: Elsevier Science Publisher Amsterdam · Zbl 0703.73100
[17] Ben-Haim, Y., Convex models of uncertainty in radial pulse buckling of shells, ASME J. Appl. Mech., 60, 3, 683-688 (1993) · Zbl 0800.73118
[18] Elishakoff, I.; Elisseeff, P., Non-probabilistic convex-theoretic modeling of scatter in material properties, AIAA J., 32, 4, 843-849 (1994) · Zbl 0804.73079
[19] Ben-Haim, Y., A non-probabilistic concept of reliability, Struct. Saf., 14, 4, 227-245 (1994)
[20] Zhu, L. P.; Elishakoff, I.; Starnes, J., Derivation of multi-dimensional ellipsoidal convex model for experimental data, Math. Comput. Modell., 24, 2, 103-114 (1996) · Zbl 0857.73081
[21] Elishakoff, I., An idea on the uncertainty triangle, Editors Rattle Space, Shock Vib. Digest, 22, 10, 1 (1995)
[22] Jiang, C.; Han, X.; Lu, G. Y.; Liu, J.; Zhang, Z.; Bai, Y. C., Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique, Comput. Methods Appl. Mech. Eng., 200, 33-36, 2528-2546 (2011) · Zbl 1230.74240
[24] Elishakoff, I., Discussion on a non-probabilistic concept of reliability, Struct. Saf., 17, 3, 195-199 (1995)
[25] Cao, H. J.; Duan, B. Y., An approach on the non-probabilistic reliability of structures based on uncertainty convex models, Chin. J. Comput. Mech., 22, 5, 546-549 (2005)
[27] Gao, W.; Song, C. M.; Tin-Loi, F., Probabilistic interval response and reliability analysis of structures with a mixture of random and interval properties, CMES - Comput. Model. Eng. Sci., 46, 2, 151-189 (2009) · Zbl 1231.74370
[28] Gao, W.; Song, C. M.; Tin-Loi, F., Probabilistic interval analysis for structures with uncertainty, Struct. Saf., 32, 3, 191-199 (2010)
[29] Luo, Y. J.; Kang, Z.; Li, A., Structural reliability assessment based on probability and convex set mixed model, Comput. Struct., 87, 21-22, 1408-1415 (2009)
[30] Jiang, C.; Han, X.; Li, W. X.; Liu, J.; Zhang, Z., A hybrid reliability approach based on probability and interval for uncertain structures, ASME J. Mech. Des., 134, 1-11 (2012)
[31] Qiu, Z. P.; Wang, X. J., Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic approach, Int. J. Solids Struct., 40, 5423-5439 (2003) · Zbl 1060.74550
[32] Qiu, Z. P.; Wang, X. J., Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis, Int. J. Solids Struct., 42, 18-19, 4958-4970 (2005) · Zbl 1119.74410
[33] Zhou, Y. T.; Jiang, C., Interval and subinterval analysis methods of the structures and their error estimations, Int. J. Comput. Methods, 3, 2, 229-244 (2006) · Zbl 1198.65088
[34] Luo, Y. J.; Kang, Z.; Luo, Z.; Alex, L., Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model, Struct. Multidiscip. Optim., 39, 3, 297-310 (2008) · Zbl 1274.74234
[35] Guo, X.; Bai, W.; Zhang, W. S., Extremal structural response analysis of truss structures under load uncertainty via SDP relaxation, Comput. Struct., 87, 246-253 (2009)
[36] Jiang, C.; Han, X.; Liu, G. R., Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval, Comput. Methods Appl. Mech. Eng., 196, 4791-4890 (2007) · Zbl 1173.74364
[37] Cramer, H.; Leadbetter, M. R., Stationary and Related Stochastic Process (1967), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0162.21102
[38] Ross, S., Stochastic Process (1983), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0555.60002
[39] Bhattacharya, R. M.; Waimire, W. C., Stochastic Process with Applications (1990), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0744.60032
[40] Rice, S. O., Mathematical analysis of random noise, Bell Syst. Technol. J., 23, 282-332 (1994) · Zbl 0063.06485
[41] Crandall, S. H., Some first-passage problems in random vibration, J. Appl. Mech., 33, 532-538 (1966)
[42] Siegert, A. J.F., On the first-passage time probability problem, Phys. Rev., 81, 617-623 (1951) · Zbl 0045.28504
[43] Li, G. Q.; Cao, H.; Li, Q. S.; Huo, D., Theory and Applications of Structural Dynamic Reliability (1993), Seismological Press: Seismological Press Beijing
[44] Melchers, R. E., Structural Reliability Analysis and Prediction (1999), John Wiley & Sons Inc.: John Wiley & Sons Inc. Chichester
[45] Zhang, Y. M.; Wen, B. C.; Liu, Q. L., First passage of uncertain single degree-of-freedom nonlinear oscillators, Comput. Methods Appl. Mech. Eng., 165, 223-231 (1998) · Zbl 0948.70019
[46] Andrieu-Renaud, C.; Sudret, B.; Lemaire, M., The PHI2 method: a way to compute time-variant reliability, Reliab. Eng. Syst. Saf., 84, 75-86 (2004)
[47] Guan, F. J.; Han, X.; Jiang, C., Uncertain optimization of engine crankshaft using interval methods, Eng. Mech., 25, 9, 198-202 (2008)
[48] Wang, L. G.; Hu, D. B., FEM Analysis 368Q crankshaft fatigue strength and some discuss on relative problems, Trans. CSICE, 18, 3, 270-274 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.