×

Multiplicative functions in short arithmetic progressions. (English) Zbl 1530.11077

Let \(\mathbb{U}=\{z\in\mathbb{C}:|z|\leqslant 1\}\) be the unit disc at the complex plane, and let \(f:\mathbb{N}\rightarrow\mathbb{U}\) be a multiplicative function. The author of this paper studies sums \[ \sum\limits_{n\equiv\, a\pmod{q}}f(n), \] where \((a,q)=1\) and \(1\leqslant q\leqslant x\) with \(q\) being very large as a function of \(x\). The results are derived for prime moduli, for moduli in the middle range \(q\leqslant x^{1/2-o(1)}\), for smooth moduli and for general moduli. In addition, hybrid results are also presented. For instance, in the case of of prime moduli, the following assertion is obtained.
Let \(1\leqslant Q\leqslant x/10\) and \(\big(\log(x/Q)\big)^{-1/200}\leqslant\varepsilon\leqslant 1\). Then there exists a set \( [1,x^{\varepsilon^{200}}]\cap\mathbb{Z}\subset Q_{x,\varepsilon}\subset[1,x]\cap\mathbb{Z}\) with \(\big|[1,Q]\setminus Q_{x,\varepsilon}\big|\leqslant (\log x)^{\varepsilon^{-200}}\) such that the following holds.
Suppose \(p\in Q_{x,\varepsilon}\cap [1,Q]\) is a prime, and \(f:\mathbb{N}\rightarrow \mathbb{U}\) is a multiplicative function. If \(\chi_1\) be a character \(\pmod{p}\) minimizing the distance \(\inf_{|t|\leqslant \log x}\mathcal{D}_p(f,\chi(n)n^{\mathrm{i}t},x)\), then \[ \sum^*\limits_{a\,\pmod{p}}\bigg|\sum_{\substack{n\leqslant x}{n\equiv a\pmod{p}}}f(n)-\frac{\chi_1(a)}{\varphi(p)}\sum_{n\leqslant x}f(n)\overline{\chi_1}(n)\bigg|^2\ll_\varepsilon \frac{x^2}{p}, \] where \[ \mathcal{D}_p(f,g,x)=\bigg(\sum_{q\leqslant x, q\neq p}\frac{1-\mathrm{Re}\big(f(q)\overline{g(q)}\big)}{q}\bigg)^{1/2} \] and \(\sum^*_{a\,\pmod{p}}\) denotes a sum over reduced residue classes \(\pmod{p}\).

MSC:

11N64 Other results on the distribution of values or the characterization of arithmetic functions
11N13 Primes in congruence classes

References:

[1] R.Baker, A theorem of Bombieri‐Vinogradov type with few exceptional moduli, Acta Arith.195 (2020), no. 3, 313-325. · Zbl 1452.11113
[2] R.Balasubramanian and O.Ramaré, and P. Srivastav, Product of three primes in large arithmetic progressions, Int. J. Number Theory19 (2023), no. 4, 843-857. · Zbl 1516.11089
[3] A.Balog, A.Granville, and K.Soundararajan, Multiplicative functions in arithmetic progressions, Ann. Math. Québec37 (2013), no. 1, 3-30. · Zbl 1306.11078
[4] M.‐C.Chang, Short character sums for composite moduli, J. Anal. Math.123 (2014), 1-33. · Zbl 1372.11087
[5] H.Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer, New York, 2000. Revised and with a preface by Hugh L. Montgomery. · Zbl 1002.11001
[6] S.Drappeau, A.Granville, and X.Shao, Smooth‐supported multiplicative functions in arithmetic progressions beyond the \(x^{1/2}\)‐barrier, Mathematika63 (2017), no. 3, 895-918. · Zbl 1428.11174
[7] P.Erdős, A. M.Odlyzko, and A.Sárközy, On the residues of products of prime numbers, Period. Math. Hungar.18 (1987), no. 3, 229-239. · Zbl 0625.10035
[8] É.Fouvry, E.Kowalski, and P.Michel, On the exponent of distribution of the ternary divisor function, Mathematika61 (2015), no. 1, 121-144. · Zbl 1317.11080
[9] É.Fouvry and M.Radziwiłł, Level of distribution of unbalanced convolutions, Ann. Sci. Éc. Norm. Supér. (4)55 (2022), no. 2, 537-568. · Zbl 1517.11125
[10] A.Granville, A. J.Harper, and K.Soundararajan, A new proof of Halász’s theorem, and its consequences, Compos. Math.155 (2019), no. 1, 126-163. · Zbl 1443.11200
[11] A.Granville and X.Shao, Bombieri‐Vinogradov for multiplicative functions, and beyond the \(x^{1/2}\)‐barrier, Adv. Math.350 (2019), 304-358. · Zbl 1473.11185
[12] A.Granville and K.Soundararajan, Decay of mean values of multiplicative functions, Canad. J. Math.55 (2003), no. 6, 1191-1230. · Zbl 1047.11093
[13] A.Granville and K.Soundararajan, An uncertainty principle for arithmetic sequences, Ann. of Math. (2)165 (2007), no. 2, 593-635. · Zbl 1139.11040
[14] A.Granville and K.Soundararajan, Large character sums: Burgess’s theorem and zeros of \(L\)‐functions, J. Eur. Math. Soc. (JEMS)20 (2018), no. 1, 1-14. · Zbl 1444.11177
[15] B.Green, A note on multiplicative functions on progressions to large moduli, Proc. Roy. Soc. Edinburgh Sect. A148 (2018), no. 1, 63-77. · Zbl 1404.11121
[16] A. J.Harper, Bombieri-Vinogradov and Barban-Davenport-Halberstam type theorems for smooth numbers, arXiv e‐prints, 2012.
[17] A. J.Harper, On a paper of K. Soundararajan on smooth numbers in arithmetic progressions, J. Number Theory132 (2012), no. 1, 182-199. · Zbl 1276.11153
[18] D. R.Heath‐Brown, Almost‐primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc.83 (1978), no. 3, 357-375. · Zbl 0375.10027
[19] D. R.Heath‐Brown, Siegel zeros and the least prime in an arithmetic progression, Quart. J. Math. Oxf. Ser. (2)41 (1990), no. 164, 405-418. · Zbl 0715.11049
[20] A.Hildebrand and G.Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux5 (1993), no. 2, 411-484. · Zbl 0797.11070
[21] C.Hooley, On the Barban‐Davenport‐Halberstam theorem. III, J. Lond. Math. Soc. (2)10 (1975), 249-256. · Zbl 0304.10029
[22] C.Hooley, On the Barban‐Davenport‐Halberstam theorem. VI, J. Lond. Math. Soc. (2)13 (1976), no. 1, 57-64. · Zbl 0338.10044
[23] C.Hooley, On the Barban‐Davenport‐Halberstam theorem. IX, Acta Arith.83 (1998), no. 1, 17-30. · Zbl 0896.11037
[24] C.Hooley, On the Barban‐Davenport‐Halberstam theorem. X, Hardy‐Ramanujan J.21 (1998), 9. · Zbl 0957.11038
[25] C.Hooley, On the Barban‐Davenport‐Halberstam theorem. XIV, Acta Arith.101 (2002), no. 3, 247-292. · Zbl 1027.11066
[26] M. N.Huxley, On the difference between consecutive primes, Invent. Math.15 (1972), 164-170. · Zbl 0241.10026
[27] H.Iwaniec, On zeros of Dirichlet’s \(L\) series, Invent. Math.23 (1974), 97-104. · Zbl 0275.10024
[28] H.Iwaniec and E.Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. · Zbl 1059.11001
[29] M.Jutila, On Linnik’s constant, Math. Scand.41 (1977), no. 1, 45-62. · Zbl 0363.10026
[30] A.Kanigowski, M.Lemańczyk, and M.Radziwiłł, Rigidity in dynamics and Möbius disjointness, Fund. Math.255 (2021), no. 3, 309-336. · Zbl 1490.37009
[31] D.Koukoulopoulos, Pretentious multiplicative functions and the prime number theorem for arithmetic progressions, Compos. Math.149 (2013), no. 7, 1129-1149. · Zbl 1337.11063
[32] K.Matomäki and M.Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. (2)183 (2016), no. 3, 1015-1056. · Zbl 1339.11084
[33] K.Matomäki and M.Radziwiłł, Multiplicative functions in short intervals II, arXiv:2007.04290, 2020.
[34] K.Matomäki, M.Radziwiłł, and T.Tao, An averaged form of Chowla’s conjecture, Algebra Number Theory9 (2015), no. 9, 2167-2196. · Zbl 1377.11109
[35] H. L.Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer, Berlin, 1971. · Zbl 0216.03501
[36] H. L.Montgomery and R. C.Vaughan, Multiplicative number theory. I, Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. · Zbl 1142.11001
[37] D. H. J.Polymath, New equidistribution estimates of Zhang type, Algebra Number Theory8 (2014), no. 9, 2067-2199. · Zbl 1307.11097
[38] J.‐C.Puchta, Primes in short arithmetic progressions, Acta Arith.106 (2003), no. 2, 143-149. · Zbl 1158.11337
[39] O.Ramaré and A.Walker, Products of primes in arithmetic progressions: a footnote in parity breaking, J. Théor. Nombres Bordeaux30 (2018), no. 1, 219-225. · Zbl 1435.11123
[40] P.Shiu, A Brun‐Titchmarsh theorem for multiplicative functions, J. reine angew. Math.313 (1980), 161-170. · Zbl 0412.10030
[41] I. E.Shparlinski, On short products of primes in arithmetic progressions, Proc. Amer. Math. Soc.147 (2019), no. 3, 977-986. · Zbl 1456.11179
[42] K.Soundararajan, The distribution of smooth numbers in arithmetic progressions, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, American Mathematical Society, Providence, RI, 2008, pp. 115-128. · Zbl 1186.11057
[43] B.Szabó, On the existence of products of primes in arithmetic progressions, arXiv:2208.05762, 2022.
[44] G.Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015. Translated from the 2008 French edition by Patrick D. F. Ion. · Zbl 0788.11001
[45] R. C.Vaughan, On a variance associated with the distribution of general sequences in arithmetic progressions. II, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.356 (1998), no. 1738, 793-809. · Zbl 0902.11040
[46] A.Walker, A multiplicative analogue of Schnirelmann’s theorem, Bull. Lond. Math. Soc.48 (2016), no. 6, 1018-1028. · Zbl 1405.11126
[47] F.Wei, Disjointness of Möbius from asymptotically periodic functions, Pure Appl. Math. Q.18 (2022), no. 3, 863-922. · Zbl 1509.37009
[48] T.Xylouris, Über die Nullstellen der Dirichletschen L‐Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 404, Universität Bonn, Bonn, 2011. Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University of Bonn, Bonn, 2011. · Zbl 1339.11080
[49] Y.Zhang, Bounded gaps between primes, Ann. of Math. (2)179 (2014), no. 3, 1121-1174. · Zbl 1290.11128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.