×

Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound. (English) Zbl 1275.92040

Summary: The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.

MSC:

92C55 Biomedical imaging and signal processing
92C35 Physiological flow
92C10 Biomechanics
Full Text: DOI

References:

[1] P. P. Sengupta, V. K. Krishnamoorthy, J. Korinek et al., “Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 539-551, 2007. · doi:10.1016/j.echo.2006.10.013
[2] Y. Notomi, Z. B. Popović, H. Yamada et al., “Ventricular untwisting: a temporal link between left ventricular relaxation and suction,” American Journal of Physiology, vol. 294, no. 1, pp. H505-H513, 2008. · doi:10.1152/ajpheart.00975.2007
[3] G. R. Hong, G. Pedrizzetti, G. Tonti et al., “Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry,” Cardiovascular Imaging, vol. 1, no. 6, pp. 705-717, 2008. · doi:10.1016/j.jcmg.2008.06.008
[4] W. Zhang, C. S. Chung, L. Shmuylovich, and S. J. Kovács, “Is left ventricular volume during diastasis the real equilibrium volume, and what is its relationship to diastolic suction?” Journal of Applied Physiology, vol. 105, no. 3, pp. 1012-1014, 2008. · doi:10.1152/japplphysiol.00799.2007
[5] P. P. Sengupta, B. K. Khandheria, and A. J. Tajik, “Is diastasis really a phase of hemodynamic stasis?” Journal of Applied Physiology, vol. 105, no. 3, pp. 1016-1019, 2008.
[6] P. P. Sengupta, B. K. Khandheria, J. Korinek et al., “Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution doppler and ultrasonic digital particle imaging velocimetry,” Journal of the American College of Cardiology, vol. 49, no. 8, pp. 899-908, 2007. · doi:10.1016/j.jacc.2006.07.075
[7] G. Pedrizzetti and F. Domenichini, “Nature optimizes the swirling flow in the human left ventricle,” Physical Review Letters, vol. 95, no. 10, Article ID 108101, pp. 1-4, 2005. · Zbl 1075.76065 · doi:10.1103/PhysRevLett.95.108101
[8] L. R. Johnson and J. H. Byrne, Essential Medical Physiology, Academic Press, 3rd edition, 2003.
[9] A. Nitenberg, I. Antony, and A. Loiseau, “Left ventricular contractile performance, ventriculoarterial coupling, and left ventricular efficiency in hypertensive patients with left ventricular hypertrophy,” American Journal of Hypertension, vol. 11, no. 10, pp. 1188-1198, 1998. · doi:10.1016/S0895-7061(98)00131-9
[10] M. Osranek, J. H. Eisenach, B. K. Khandheria, K. Chandrasekaran, J. B. Seward, and M. Belohlavek, “Arterioventricular coupling and ventricular efficiency after antihypertensive therapy: A Noninvasive Prospective Study,” Hypertension, vol. 51, no. 2, pp. 275-281, 2008. · doi:10.1161/HYPERTENSIONAHA.107.097964
[11] P. P. Sengupta, G. Pedrizzetti, P. J. Kilner et al., “Emerging trends in CV flow visualization,” Journal of the American College of Cardiology, vol. 5, pp. 305-316, 2012.
[12] C. M. Murea, “Arbitrary lagrangian eulerian approximation with remeshing for Navier-Stokes equations,” International Journal for Numerical Methods in Biomedical Engineering, vol. 26, no. 11, pp. 1435-1448, 2010. · Zbl 1397.76072 · doi:10.1002/cnm.1223
[13] P. H. Saksono, W. G. Dettmer, and D. Perić, “An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction,” International Journal for Numerical Methods in Engineering, vol. 71, no. 9, pp. 1009-1050, 2007. · Zbl 1194.76140 · doi:10.1002/nme.1971
[14] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor, “A coupled momentum method for modeling blood flow in three-dimensional deformable arteries,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 41-43, pp. 5685-5706, 2006. · Zbl 1126.76029 · doi:10.1016/j.cma.2005.11.011
[15] C. A. Taylor and J. D. Humphrey, “Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 198, pp. 3514-3523, 2009. · Zbl 1229.76120 · doi:10.1016/j.cma.2009.02.004
[16] J. Donea, S. Giuliani, and J. P. Halleux, “An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions,” Computer Methods in Applied Mechanics and Engineering, vol. 33, no. 1-3, pp. 689-723, 1982. · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[17] M. Vinokur, “An analysis of finite-difference and finite-volume formulations of conservation laws,” Journal of Computational Physics, vol. 81, no. 1, pp. 1-52, 1989. · Zbl 0662.76039 · doi:10.1016/0021-9991(89)90063-6
[18] S. A. Morton, R. B. Melville, and M. R. Visbal, “Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes,” Journal of Aircraft, vol. 35, no. 5, pp. 798-805, 1998.
[19] Z. Yang and D. J. Mavriplis, “Higher-order time-integration schemes for aeroelastic applications on unstructured meshes,” AIAA Journal, vol. 45, no. 1, pp. 138-150, 2007. · doi:10.2514/1.22847
[20] N. R. Saber, A. D. Gosman, N. B. Wood, P. J. Kilner, C. L. Charrier, and D. N. Firmin, “Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience,” Annals of Biomedical Engineering, vol. 29, no. 4, pp. 275-283, 2001. · doi:10.1114/1.1359452
[21] Y. Cheng, H. Oertel, and T. Schenkel, “Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase,” Annals of Biomedical Engineering, vol. 33, no. 5, pp. 567-576, 2005. · doi:10.1007/s10439-005-4388-9
[22] C. S. Peskin, “The immersed boundary method,” Acta Numerica, vol. 11, pp. 479-517, 2002. · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[23] R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annual Review of Fluid Mechanics, vol. 37, pp. 239-261, 2005. · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[24] L. Lee and R. J. Leveque, “An immersed interface method for incompressible Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 25, no. 3, pp. 832-856, 2003. · Zbl 1163.65322 · doi:10.1137/S1064827502414060
[25] S. Osher and R. P. Fedkiw, “Level set methods and dynamic implicit surfaces,” in Applied Mathematical Sciences, S. S. Antman, J. E. Marsden, and L. Sirovich, Eds., vol. 153, Springer, New York, NY, USA, 2003. · Zbl 1026.76001
[26] J. A. Sethian, “Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science,” in Cambridge Monographs on Applied and Computational Mathematics, P. G. Ciarlet, A. Iserles, R. V. Kohn, and M. H. Wright, Eds., Cambridge University Press, Cambridge, UK, 1999. · Zbl 0973.76003
[27] J. A. Sethian and P. Smereka, “Level set methods for fluid interfaces,” Annual Review of Fluid Mechanics, vol. 35, pp. 341-372, 2003. · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[28] R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, “A distributed Lagrange multiplier/fictitious domain method for particulate flows,” International Journal of Multiphase Flow, vol. 25, no. 5, pp. 755-794, 1999. · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[29] J. M. A. Stijnen, J. de Hart, P. H. M. Bovendeerd, and F. N. van de Vosse, “Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves,” Journal of Fluids and Structures, vol. 19, no. 6, pp. 835-850, 2004. · doi:10.1016/j.jfluidstructs.2004.04.007
[30] H. S. Udaykumar, R. Mittel, and W. Shyy, “Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids,” Journal of Computational Physics, vol. 153, no. 2, pp. 535-574, 1999. · Zbl 0953.76071 · doi:10.1006/jcph.1999.6294
[31] C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220-252, 1977. · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[32] C. S. Peskin and D. M. McQueen, “Modeling prosthetic heart valves for numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 37, pp. 113-132, 1980. · Zbl 0447.92009 · doi:10.1016/0021-9991(80)90007-8
[33] C. S. Peskin and D. M. McQueen, “A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid,” Journal of Computational Physics, vol. 81, no. 2, pp. 372-405, 1989. · Zbl 0668.76159 · doi:10.1016/0021-9991(89)90213-1
[34] J. De Hart, F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs, “A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve,” Journal of Biomechanics, vol. 36, no. 5, pp. 699-712, 2003. · doi:10.1016/S0021-9290(02)00448-7
[35] J. De Hart, G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens, “A two-dimensional fluid-structure interaction model of the aortic value,” Journal of Biomechanics, vol. 33, no. 9, pp. 1079-1088, 2000. · doi:10.1016/S0021-9290(00)00068-3
[36] J. De Hart, G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens, “A three-dimensional computational analysis of fluid-structure interaction in the aortic valve,” Journal of Biomechanics, vol. 36, no. 1, pp. 103-112, 2003. · doi:10.1016/S0021-9290(02)00244-0
[37] J. De Hart, G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens, “Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole,” Journal of Biomechanics, vol. 37, no. 3, pp. 303-311, 2004. · doi:10.1016/S0021-9290(03)00293-8
[38] R. Van Loon, P. D. Anderson, F. P. T. Baaijens, and F. N. Van De Vosse, “A three-dimensional fluid-structure interaction method for heart valve modelling,” Comptes Rendus-Mecanique, vol. 333, no. 12, pp. 856-866, 2005. · Zbl 1173.76319 · doi:10.1016/j.crme.2005.10.008
[39] R. van Loon, P. D. Anderson, J. de Hart, and F. P. T. Baaijens, “A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves,” International Journal for Numerical Methods in Fluids, vol. 46, no. 5, pp. 533-544, 2004. · Zbl 1060.76582 · doi:10.1002/fld.775
[40] R. van Loon, P. D. Anderson, and F. N. van de Vosse, “A fluid-structure interaction method with solid-rigid contact for heart valve dynamics,” Journal of Computational Physics, vol. 217, no. 2, pp. 806-823, 2006. · Zbl 1099.74044 · doi:10.1016/j.jcp.2006.01.032
[41] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations,” Journal of Computational Physics, vol. 161, no. 1, pp. 35-60, 2000. · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[42] A. Gilmanov and F. Sotiropoulos, “A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies,” Journal of Computational Physics, vol. 207, no. 2, pp. 457-492, 2005. · Zbl 1213.76135 · doi:10.1016/j.jcp.2005.01.020
[43] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbecke, “A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries,” Journal of Computational Physics, vol. 227, no. 10, pp. 4825-4852, 2008. · Zbl 1388.76263 · doi:10.1016/j.jcp.2008.01.028
[44] L. Ge and F. Sotiropoulos, “A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries,” Journal of Computational Physics, vol. 225, no. 2, pp. 1782-1809, 2007. · Zbl 1213.76134 · doi:10.1016/j.jcp.2007.02.017
[45] I. Borazjani, L. Ge, and F. Sotiropoulos, “Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies,” Journal of Computational Physics, vol. 227, no. 16, pp. 7587-7620, 2008. · Zbl 1213.76129 · doi:10.1016/j.jcp.2008.04.028
[46] F. Domenichini, G. Pedrizzetti, and B. Baccani, “Three-dimensional filling flow into a model left ventricle,” Journal of Fluid Mechanics, vol. 539, pp. 179-198, 2005. · Zbl 1075.76065 · doi:10.1017/S0022112005005550
[47] F. Domenichini, G. Querzoli, A. Cenedese, and G. Pedrizzetti, “Combined experimental and numerical analysis of the flow structure into the left ventricle,” Journal of Biomechanics, vol. 40, no. 9, pp. 1988-1994, 2007. · doi:10.1016/j.jbiomech.2006.09.024
[48] T. B. Le and F. Sotiropoulos, “On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle,” European Journal of Mechanics B, vol. 35, pp. 20-24, 2012.
[49] G. Pedrizzetti, F. Domenichini, and G. Tonti, “On the left ventricular vortex reversal after mitral valve replacement,” Annals of Biomedical Engineering, vol. 38, no. 3, pp. 769-773, 2010. · doi:10.1007/s10439-010-9928-2
[50] X. Zhenga, J. Seoa, V. Vedulaa, T. Abrahamb, and R. Mittal, “Computational modeling and analysis of intracardiac flows in simple models of the left ventricle,” European Journal of Mechanics B, vol. 35, pp. 31-39, 2012.
[51] I. Borazjani and F. Sotiropoulos, “The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta,” Journal of Biomechanical Engineering, vol. 132, no. 11, Article ID 111005-8, 2010.
[52] I. Borazjani, L. Ge, and F. Sotiropoulos, “High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta,” Annals of Biomedical Engineering, vol. 38, no. 2, pp. 326-344, 2010. · doi:10.1007/s10439-009-9807-x
[53] F. Sotiropoulos and I. Borazjani, “A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves,” Medical and Biological Engineering and Computing, vol. 47, no. 3, pp. 245-256, 2009. · doi:10.1007/s11517-009-0438-z
[54] M. D. De Tullio, A. Cristallo, E. Balaras, and R. Verzicco, “Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve,” Journal of Fluid Mechanics, vol. 622, pp. 259-290, 2009. · Zbl 1165.76388 · doi:10.1017/S0022112008005156
[55] H. A. Simon, L. Ge, I. Borazjani, F. Sotiropoulos, and A. P. Yoganathan, “Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions,” The Journal of Biomechanical Engineering, vol. 38, article 1257, 2010. · doi:10.1007/s10439-010-9913-9
[56] L. P. Dasi, L. Ge, A. H. Simon, F. Sotiropoulos, and P. A. Yoganathan, “Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta,” Physics of Fluids, vol. 19, no. 6, Article ID 067105, 2007. · Zbl 1182.76181 · doi:10.1063/1.2743261
[57] P. J. Hunter, A. J. Pullan, and B. H. Smaill, “Modeling total heart function,” Annual Review of Biomedical Engineering, vol. 5, pp. 147-177, 2003. · doi:10.1146/annurev.bioeng.5.040202.121537
[58] R. Faludi, M. Szulik, J. D’hooge et al., “Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry,” Journal of Thoracic and Cardiovascular Surgery, vol. 139, no. 6, pp. 1501-1510, 2010. · doi:10.1016/j.jtcvs.2009.07.060
[59] H. B. Kim, J. Hertzberg, C. Lanning, and R. Shandas, “Noninvasive measurement of steady and pulsating velocity profiles and shear rates in arteries using echo PIV: in vitro validation studies,” Annals of Biomedical Engineering, vol. 32, no. 8, pp. 1067-1076, 2004. · doi:10.1114/B:ABME.0000036643.45452.6d
[60] H. B. Kim, J. R. Hertzberg, and R. Shandas, “Development and validation of echo PIV,” Experiments in Fluids, vol. 36, no. 3, pp. 455-462, 2004. · doi:10.1007/s00348-003-0743-5
[61] P. P. Sengupta, G. Pedrizetti, and J. Narula, “Multiplanar visualization of blood flow using echocardiographic particle imaging velocimetry,” Journal of the American College of Cardiology, vol. 5, pp. 566-569, 2012.
[62] L. Liu, H. Zheng, L. Williams et al., “Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results,” Physics in Medicine and Biology, vol. 53, no. 5, pp. 1397-1412, 2008. · doi:10.1088/0031-9155/53/5/015
[63] J. Westerdale, M. Belohlavek, E. M. McMahon, P. Jiamsripong, J. J. Heys, and M. Milano, “Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry,” Journal of Ultrasound in Medicine, vol. 30, no. 2, pp. 187-195, 2011.
[64] J. Cooke, J. Hertzberg, M. Boardman, and R. Shandas, “Characterizing vortex ring behavior during ventricular filling with doppler echocardiography: An In Vitro Study,” Annals of Biomedical Engineering, vol. 32, no. 2, pp. 245-256, 2004. · doi:10.1023/B:ABME.0000012744.97413.01
[65] O. M. Mukdadi, H. B. Kim, J. Hertzberg, and R. Shandas, “Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: Initial Studies,” Ultrasonics, vol. 42, no. 10, pp. 1111-1121, 2004. · doi:10.1016/j.ultras.2004.02.021
[66] P. J. Kilner, G. Z. Yang, A. J. Wilkest, R. H. Mohladdlin, D. N. Firmin, and M. H. Yacoub, “Asymmetric redirection of flow through the heart,” Nature, vol. 404, no. 6779, pp. 759-761, 2000. · doi:10.1038/35008075
[67] M. Gharib, E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri, “Optimal vortex formation as an index of cardiac health,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6305-6308, 2006. · doi:10.1073/pnas.0600520103
[68] M. Gharib, E. Rambod, and K. Shariff, “A universal time scale for vortex ring formation,” Journal of Fluid Mechanics, vol. 360, pp. 121-140, 1998. · Zbl 0922.76021 · doi:10.1017/S0022112097008410
[69] J. O. Dabiri and M. Gharib, “The role of optimal vortex formation in biological fluid transport,” Proceedings of the Royal Society B, vol. 272, no. 1572, pp. 1557-1560, 2005. · doi:10.1098/rspb.2005.3109
[70] A. Kheradvar, R. Assadi, A. Falahatpisheh, and P. P. Sengupta, “Assessment of transmitral vortex formation in patients with diastolic dysfunction,” Journal of the American Society of Echocardiography, vol. 25, pp. 220-227, 2012.
[71] P. Jiamsripong, A. M. Calleja, M. S. Alharthi et al., “Increase in the late diastolic filling force is associated with impaired transmitral flow efficiency in acute moderate elevation of left ventricular afterload,” Journal of Ultrasound in Medicine, vol. 28, no. 2, pp. 175-182, 2009.
[72] P. Jiamsripong, A. M. Calleja, M. S. Alharthi et al., “Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time,” Journal of the American Society of Echocardiography, vol. 22, no. 4, pp. 427-431, 2009. · doi:10.1016/j.echo.2008.12.006
[73] P. Jiamsripong, M. S. Alharthi, A. M. Calleja et al., “Impact of pericardial adhesions on diastolic function as assessed by vortex formation time, a parameter of transmitral flow efficiency,” Cardiovascular Ultrasound, vol. 8, no. 1, article no. 42, 2010. · doi:10.1186/1476-7120-8-42
[74] M. Belohlavek, P. Jiamsripong, A. M. Calleja et al., “Patients with Alzheimer disease have altered transmitral flow: echocardiographic analysis of the vortex formation time,” Journal of Ultrasound in Medicine, vol. 28, no. 11, pp. 1493-1500, 2009.
[75] Z. Cai, T. A. Manteuffel, and S. F. Mccormick, “First-order system least squares for the stokes equations, with application to linear elasticity,” SIAM Journal on Numerical Analysis, vol. 34, no. 5, pp. 1727-1741, 1997. · Zbl 0901.76052 · doi:10.1137/S003614299527299X
[76] Z. Cai, C. O. Lee, T. A. Manteuffel, and S. F. McCormick, “First-order system least squares for the Stokes and linear elasticity equations: further results,” SIAM Journal on Scientific Computing, vol. 21, no. 5, pp. 1728-1739, 2000. · Zbl 0968.76035 · doi:10.1137/S1064827598338652
[77] Z. Cai, T. A. Manteuffel, and S. F. Mccormick, “First-order system least squares for second-order partial differential equations: part II,” SIAM Journal on Numerical Analysis, vol. 34, no. 2, pp. 425-454, 1997. · Zbl 0912.65089 · doi:10.1137/S0036142994266066
[78] P. B. Bochev and M. D. Gunzburger, “Finite element methods of least-squares type,” SIAM Review, vol. 40, no. 4, pp. 789-837, 1998. · Zbl 0914.65108 · doi:10.1137/S0036144597321156
[79] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, “First-order system least squares for second-order partial differential equations-part I,” SIAM Journal on Numerical Analysis, vol. 31, no. 6, pp. 1785-1799, 1994. · Zbl 0813.65119 · doi:10.1137/0731091
[80] J. J. Heys, C. G. DeGroff, T. A. Manteuffel, and S. F. McCormick, “First-order system least-squares (FOSLS) for modeling blood flow,” Medical Engineering and Physics, vol. 28, no. 6, pp. 495-503, 2006. · doi:10.1016/j.medengphy.2005.10.002
[81] J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, “An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation,” Journal of Computational Physics, vol. 226, no. 1, pp. 994-1006, 2007. · Zbl 1123.76032 · doi:10.1016/j.jcp.2007.05.005
[82] J. J. Heys, E. Lee, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, “Enhanced mass conservation in least-squares methods for Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 31, pp. 2303-2321, 2009. · Zbl 1188.76195 · doi:10.1137/080721303
[83] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, “First-order system least squares (FOSLS) for coupled fluid-elastic problems,” Journal of Computational Physics, vol. 195, no. 2, pp. 560-575, 2004. · Zbl 1115.74320 · doi:10.1016/j.jcp.2003.09.034
[84] Z. Cai, T. A. Manteuffel, S. F. Mccormick, and J. Ruge, “First-order system \Bbb L\Bbb L (FOSLL\ast ): scalar elliptic partial differential equations,” SIAM Journal on Numerical Analysis, vol. 39, no. 4, pp. 1418-1445, 2002. · Zbl 1008.65085 · doi:10.1137/S0036142900388049
[85] B. N. Jiang and L. A. Povinelli, “Least-squares finite element method for fluid dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 81, no. 1, pp. 13-37, 1990. · Zbl 0714.76058 · doi:10.1016/0045-7825(90)90139-D
[86] B. N. Jiang, “Least-squares finite element method for incompressible Navier-Stokes problems,” International Journal for Numerical Methods in Fluids, vol. 14, no. 7, pp. 843-859, 1992. · Zbl 0753.76097 · doi:10.1002/fld.1650140706
[87] M. Berndt, T. A. Manteuffel, S. F. Mccormick, and G. Starke, “Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients-part I,” SIAM Journal on Numerical Analysis, vol. 43, no. 1, pp. 386-408, 2005. · Zbl 1087.65115 · doi:10.1137/S0036142903427688
[88] M. Berndt, T. A. Manteuffel, and S. F. Mccormick, “Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients-part II,” SIAM Journal on Numerical Analysis, vol. 43, no. 1, pp. 409-436, 2005. · Zbl 1087.65114 · doi:10.1137/S003614290342769X
[89] P. B. Bochev and M. D. Gunzburger, “Accuracy of least-squares methods for the Navier-Stokes equations,” Computers and Fluids, vol. 22, no. 4-5, pp. 549-563, 1993. · Zbl 0779.76039 · doi:10.1016/0045-7930(93)90025-5
[90] P. B. Bochev and M. D. Gunzburger, “A least-squares finite element method for the Navier-Stokes equations,” Applied Mathematics Letters, vol. 6, no. 2, pp. 27-30, 1993. · Zbl 0770.76035 · doi:10.1016/0893-9659(93)90007-A
[91] F. Wei, J. Westerdale, E. M. McMahon, M. Belohlavek, and J. J. Heys, “Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 371315, 9 pages, 2012. · Zbl 1233.92011 · doi:10.1155/2012/371315
[92] J. J. Heys, T. A. Manteuffel, S. F. McCormick, M. Milano, J. Westerdale, and M. Belohlavek, “Weighted least-squares finite elements based on particle imaging velocimetry data,” Journal of Computational Physics, vol. 229, no. 1, pp. 107-118, 2010. · Zbl 1381.76173 · doi:10.1016/j.jcp.2009.09.016
[93] E. Lee, T. A. Manteuffel, and C. R. Westphal, “Weighted-norm first-order system least squares (FOSLS) for problems with corner singularities,” SIAM Journal on Numerical Analysis, vol. 44, no. 5, pp. 1974-1996, 2006. · Zbl 1129.65087 · doi:10.1137/050636279
[94] P. Bochev, T. A. Manteuffel, and S. F. McCormick, “Analysis of velocity-flux least-squares principles for the Navier-Stokes equations-part II,” SIAM Journal on Numerical Analysis, vol. 36, no. 4, pp. 1125-1144, 1999. · Zbl 0960.76044 · doi:10.1137/S0036142997324976
[95] P. B. Bochev, “Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations,” Numerical Methods for Partial Differential Equations, vol. 15, no. 2, pp. 237-256, 1999. · Zbl 0921.76102 · doi:10.1002/(SICI)1098-2426(199903)15:2<237::AID-NUM7>3.0.CO;2-R
[96] P. B. Bochev, “Analysis of least-squares finite element methods for the Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 34, no. 5, pp. 1817-1844, 1997. · Zbl 0901.76030 · doi:10.1137/S0036142994276001
[97] P. M. Knupp and S. Steinberg, Fundamentals of Grid Generation, vol. 286, CRC Press, Boca Raton, Fla, USA, 1994. · Zbl 0855.65123
[98] J. J. Heys, V. H. Barocas, and M. J. Taravella, “Modeling passive mechanical interaction between aqueous humor and iris,” Journal of Biomechanical Engineering, vol. 123, no. 6, pp. 540-547, 2001. · doi:10.1115/1.1411972
[99] P. A. Sackinger, P. R. Schunk, and R. R. Rao, “A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation,” Journal of Computational Physics, vol. 125, no. 1, pp. 83-103, 1996. · Zbl 0853.65138 · doi:10.1006/jcph.1996.0081
[100] D. M. McQueen and C. S. Peskin, “Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity,” in Proceedings of the 20th International Congress on Theoretical and Applied Mechanics (ICTAM ’00), H. Aref and J. W. Phillips, Eds., Mechanics for a New Millennium, Kluwer Academic Publishers, 2000.
[101] Q. Long, R. Merrifield, G. Z. Yang, X. Y. Xu, P. J. Kilner, and D. N. Firmin, “The influence of inflow boundary conditions on intra left ventricle flow predictions,” Journal of Biomechanical Engineering, vol. 125, no. 6, pp. 922-927, 2003. · doi:10.1115/1.1635404
[102] T. Schenkel, M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel, “MRI-Based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart,” Annals of Biomedical Engineering, vol. 37, no. 3, pp. 503-515, 2009. · doi:10.1007/s10439-008-9627-4
[103] I. Borazjani, L. Ge, T. Le, and F. Sotiropoulos, “A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows,” Computers and Fluids, vol. 77, pp. 76-96, 2013. · Zbl 1284.76262
[104] I. Borazjani, “Fluid -structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves,” Computer Methods in Applied Mechanics and Engineering, vol. 257, pp. 103-116, 2013. · Zbl 1286.74030
[105] J. C. R. Hunt, A. A. Wray, and P. Moin, “Eddies, streams, and convergence zones in turbulent flows,” Research Report, Center for Turbulence, 1988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.