×

Dissipativity analysis for a class of discrete-time neutral stochastic nonlinear systems with time delay. (English) Zbl 1471.93274

Summary: This paper focuses on the problem of dissipativity analysis for a class of discrete-time neutral stochastic nonlinear systems (DTNSNSs) with time delay and parameter uncertainties. Different from the existing results on this topic of neutral system, a kind of discretizing the neutral system is considered. Firstly, a sufficient condition of the dissipativity, which is dependent on the solution of the Lyapunov-Krasovskii technique and linear matrix inequalities (LMIs), is established. Moreover, the state-feedback controller is designed to guarantee the dissipative performance of the closed-loop system. The effectiveness of the theoretical results is finally demonstrated by a numerical example.

MSC:

93E15 Stochastic stability in control theory
93B36 \(H^\infty\)-control
34K50 Stochastic functional-differential equations

References:

[1] Zhu, S.; Liu, D.; Yang, C.; Fu, J., Synchronization of memristive complex-valued neural networks with time delays via pinning control method, IEEE Transactions on Cybernetics, 50, 8, 3806-3815 (2020) · doi:10.1109/tcyb.2019.2946703
[2] Wu, A.; Zeng, Z., Lagrange stability of memristive neural networks with discrete and distributed delays, IEEE Transactions on Neural Networks and Learning Systems, 25, 4, 690-703 (2014) · doi:10.1109/tnnls.2013.2280458
[3] Cao, Y.; Samidurai, R.; Sriraman, R., Stability and dissipativity analysis for neutral type stochastic markovian jump static neural networks with time delays, Journal of Artificial Intelligence and Soft Computing Research, 9, 3, 189-204 (2019) · doi:10.2478/jaiscr-2019-0003
[4] Wu, L.; Yang, X.; Lam, H.-K., Dissipativity analysis and synthesis for discrete-time T-S fuzzy stochastic systems with time-varying delay, IEEE Transactions on Fuzzy Systems, 22, 2, 380-394 (2014) · doi:10.1109/tfuzz.2013.2256913
[5] Wu, A.; Zeng, Z., Output convergence of fuzzy neurodynamic system with piecewise constant argument of generalized type and time-varying input, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 12, 1689-1702 (2016) · doi:10.1109/tsmc.2016.2524060
[6] Liu, D.; Zhu, S.; Sun, K., Global anti-synchronization of complex-valued memristive neural networks with time delays, IEEE Transactions on Cybernetics, 49, 5, 1735-1747 (2019) · doi:10.1109/tcyb.2018.2812708
[7] Liu, L.; Wu, A.; Zeng, Z.; Huang, T., Global mean square exponential stability of stochastic neural networks with retarded and advanced argument, Neurocomputing, 247, 156-164 (2017) · doi:10.1016/j.neucom.2017.03.057
[8] Li, Z.-Y.; Lam, J.; Wang, Y., Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica, 91, 179-189 (2018) · Zbl 1387.93170 · doi:10.1016/j.automatica.2018.01.014
[9] Chen, D.; Zhang, W., Sliding mode control of uncertain neutral stochastic systems with multiple delays, Mathematical Problems in Engineering, 2008 (2008) · Zbl 1167.93324 · doi:10.1155/2008/761342
[10] Chen, H.; Shi, P.; Lim, C.-C., Stability analysis for neutral stochastic delay systems with Markovian switching, Systems & Control Letters, 110, 38-48 (2017) · Zbl 1378.93134 · doi:10.1016/j.sysconle.2017.10.008
[11] Robust, G.; Soundararajan, G.; Subramaniam, R.; Ramasamy, M., Robust extended dissipativity analysis for Markovian jump discrete-time delayed stochastic singular neural networks, Neural Computing and Applications, 32, 4, 9699-9712 (2020) · doi:10.1007/s00521-019-04497-y
[12] Ding, S.; Wang, Z.; Zhang, H., Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, IEEE Transactions on Neural Networks and Learning Systems, 29, 3, 618-630 (2016) · doi:10.1109/TNNLS.2016.2631624
[13] Pang, H.; Zhao, J., Incremental (Q, S, R)-dissipativity and incremental stability for switched nonlinear systems, Journal of the Franklin Institute, 353, 17, 4542-4564 (2016) · Zbl 1349.93354 · doi:10.1016/j.jfranklin.2016.08.022
[14] Wei, F.; Chen, G.; Wang, W., Finite-time synchronization of memristor neural networks via interval matrix method, Neural Networks, 127, 7-18 (2020) · Zbl 1471.93240 · doi:10.1016/j.neunet.2020.04.003
[15] Ailong Wu, A.; Zhigang Zeng, Z., Exponential stabilization of memristive neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems, 23, 12, 1919-1929 (2012) · doi:10.1109/tnnls.2012.2219554
[16] Wu, A.; Zeng, Z., Global mittag-leffler stabilization of fractional-order memristive neural networks, IEEE Transactions on Neural Networks and Learning Systems, 28, 1, 206-217 (2017) · doi:10.1109/tnnls.2015.2506738
[17] Wu, M.; Huang, N.; Zhao, C., Stability of a class of nonlinear neutral stochastic differential equations with variable time delays, Analele Universitatii Ovidius Constanta Seria Matematica, 20, 1, 467-488 (2012) · Zbl 1274.34233 · doi:10.2478/v10309-012-0032-5
[18] Gao, Y.; Zhu, S.; Li, J., Reachable set bounding for a class of memristive complex-valued neural networks with disturbances, Neurocomputing, 385, 368-377 (2020) · doi:10.1016/j.neucom.2019.12.085
[19] Shen, M.; Fei, C.; Fei, W.; Mao, X., Boundedness and stability of highly nonlinear hybrid neutral stochastic systems with multiple delays, Science China Information Sciences, 62, 10 (2019) · doi:10.1007/s11432-018-9755-7
[20] Fang, L.; Liu, L.; Wu, Z.; Liu, Q., Stability analysis for nonlinear Markov jump neutral stochastic functional differential systems, Applied Mathematics and Computation, 394 (2020) · Zbl 1508.93317 · doi:10.1016/j.amc.2020.125782
[21] Qiu, F.; Cao, J.; Hayat, T., Delay-dependent stability of neutral system with mixed time-varying delays and nonlinear perturbations using delay-dividing approach, Cognitive Neurodynamics, 9, 1, 75-83 (2015) · doi:10.1007/s11571-014-9300-6
[22] Fang, L.; Wu, Z.; Cao, J.; Zheng, S.; Alsaadi, F., Exponential stability for nonlinear hybrid stochastic systems with time varying delays of neutral type, Applied Mathematics Letters, 107 (2020) · Zbl 1445.34116 · doi:10.1016/j.aml.2020.106468
[23] Willems, J. C., Dissipative dynamical systems part I: general theory, Archive for Rational Mechanics and Analysis, 45, 5, 321-351 (1972) · Zbl 0252.93002 · doi:10.1007/bf00276493
[24] Zhu, B.; Zhang, Q.; Chang, C., Delay-dependent dissipative control for a class of non-linear system via Takagi-Sugeno fuzzy descriptor model with time delay, IET Control Theory & Applications, 8, 7, 451-461 (2014) · doi:10.1049/iet-cta.2013.0438
[25] Yang, Y.; Yu, S.; Chen, G., Robust control for a class of nonlinear systems with time-varying delays based on dissipative analysis, Proceedings of the 2018 Chinese Control And Decision Conference (CCDC) · doi:10.1109/CCDC.2018.8407128
[26] Wang, H.; Zhao, J., Passivity and \(H_\infty\) control of switched discrete-time nonlinear systems using linearisation, International Journal of Systems Science, 49, 1-4, 1-16 (2018) · Zbl 1385.93028 · doi:10.1080/00207721.2017.1390701
[27] Kim, J. H.; Park, H. B., \( H_\infty\) state feedback control for generalized continuous/discrete time-delay system, Automatica, 35, 8, 1443-1451 (1999) · Zbl 0954.93011 · doi:10.1016/s0005-1098(99)00038-2
[28] Ma, Y.; Shen, M.; Du, H.; Ren, Y.; Bian, G., An iterative observer-based fault estimation for discrete-time T-S fuzzy systems, International Journal of Systems Science, 51, 15, 1-12 (2020) · Zbl 1483.93342 · doi:10.1080/00207721.2020.1746440
[29] Wu, A.; Liu, H.; Zeng, Z., Observer design and \(H_\infty\) performance for discrete-time uncertain fuzzy-logic systems, IEEE Transactions on Cybernetics, 51, 5, 2398-2408 (2021) · doi:10.1109/TCYB.2019.2948562
[30] Chen, G.; Gao, Y.; Zhu, S., Robust delay-feedback control for discrete-time stochastic interval systems with time-delay and Markovian jumps, Proceedings of the 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI) · doi:10.1109/ICACI.2017.7974485
[31] Li, H.; Liu, A.; Zhang, L., Input-to-state stability of time-varying nonlinear discrete-time systems via indefinite difference Lyapunov functions, ISA Transactions, 77, 71-76 (2018) · doi:10.1016/j.isatra.2018.03.022
[32] Susanto, E.; Wibawa, I.; Halomoan, J.; Wibowo, A.; Ishitobi, M., Guaranteed cost filter design for discrete time neutral systems, Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT) · doi:10.1109/ICACOMIT.2015.7440179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.