×

3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method. (English) Zbl 1507.76005

Summary: In this contribution we present a least-squares finite element formulation to model steady-state flow of incompressible, non-Newtonian fluids in three dimensions including data assimilation. The approach is based on the incompressible Navier-Stokes equations and the nonlinear viscosity is considered by means of the Carreau-Yasuda viscosity model, which can account for shear-thickening and shear-thinning behavior of generalized Newtonian fluids. We outline the procedure how to integrate given data into the numerical solution of flow problems without additional computational cost using the least-squares FEM. Assimilation of experimental data provides the opportunity to reduce model errors resulting in a solution which more closely approximates reality. Furthermore, the preprocessing of the available data using Kriging interpolation is also described briefly. The presented formulation is first validated by investigating the flow in a cube with an exact solution without data assimilation. Convergence is evaluated based on the error in velocities and pressure compared to the exact solution. Then the effect of data assimilation is shown by modeling blood flow through a carotid bifurcation model and integrating data either along lines or over entire cross-sectional areas. The improvement of the numerical solution by means of data assimilation is revealed by comparing the calculated velocity profiles with experimental and numerical reference values.

MSC:

76A05 Non-Newtonian fluids
76M10 Finite element methods applied to problems in fluid mechanics

Software:

SMS; Mathematica; AceFEM
Full Text: DOI

References:

[1] Lynn, P. P.; Arya, S. K., Use of the least squares criterion in the finite element formulation, Internat. J. Numer. Methods Engrg., 6, 75-88 (1973) · Zbl 0262.73075
[2] Zienkiewicz, O. C.; Owen, D. R.; Lee, K. N., Least square-finite element for elasto-static problems. Use of ‘reduced’ integration, Internat. J. Numer. Methods Engrg., 8, 341-358 (1974) · Zbl 0276.73040
[3] Eason, E. D., A review of least-squares methods for solving partial differential equations, Internat. J. Numer. Methods Engrg., 10, 1021-1046 (1976) · Zbl 0327.65079
[4] Jiang, B.-N., The Least-Squares Finite Element Method, Scientific Computation (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0904.76003
[5] Kayser-Herold, O.; Matthies, H. G., Least-squares FEM, literature review (2005), Informatik-Bericht 2005-05, TU Braunschweig, Institut FÜR Wissenschaftliches Rechnen
[6] Bochev, P. B.; Gunzburger, M. D., Least-Squares Finite Element Methods (2009), Springer-Verlag: Springer-Verlag New York · Zbl 1168.65067
[7] Jiang, B.-N.; Chang, C. L., Least-squares finite elements for the Stokes problem, Comput. Methods Appl. Math., 78, 297-311 (1990) · Zbl 0706.76033
[8] Jiang, B.-N., A least-squares finite element method for incompressible Navier-Stokes problems, Int. J. Numer. Methods Fluids, 14, 843-859 (1992) · Zbl 0753.76097
[9] Bochev, P. B., Experiences with negative norm least-square methods for the Navier Stokes equations, Electron. Trans. Numer. Anal., 6, 44-62 (1997) · Zbl 0897.76047
[10] Bell, B. C.; Surana, K. S., A space-time coupled p-version least-squares finite element formulation for unsteady fluid dynamics problems, Internat. J. Numer. Methods Engrg., 37, 3545-3569 (1994) · Zbl 0814.76057
[11] Bochev, P. B.; Gunzburger, M. D., Least-squares methods for the velocity-pressure-stress formulation of the Stokes equations, Comput. Methods Appl. Math., 126, 267-287 (1995) · Zbl 1067.76562
[12] Ding, X.; Tsang, T. T.H., On first-order formulations of the least-squares finite element method for incompressible flows, Int. J. Comput. Fluid Dyn., 17, 183-197 (2003) · Zbl 1043.76517
[13] Cai, Z.; Manteuffel, T. A.; McCormick, S. F., First-order system least squares for the Stokes equation, with application to linear elasticity, SIAM J. Numer. Anal., 34, 1727-1741 (1997) · Zbl 0901.76052
[14] Bochev, P. B.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F., Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal., 35, 3, 990-1009 (1998) · Zbl 0910.76032
[15] Bochev, P. B.; Manteuffel, T. A.; McCormick, S. F., Analysis of velocity-flux least-squares principles for the Navier-Stokes equations: Part II, SIAM J. Numer. Anal., 36, 4, 1125-1144 (1999) · Zbl 0960.76044
[16] Bolton, P.; Thatcher, R. W., A least-squares finite element method for the Navier-Stokes equations, J. Comput. Phys., 213, 1, 174-183 (2006) · Zbl 1088.76024
[17] Heys, J. J.; Lee, E.; Manteuffel, T. A.; McCormick, S. F., An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation, J. Comput. Phys., 226, 994-1006 (2007) · Zbl 1123.76032
[18] Chang, C. L.; Nelson, J. J., Least-squares finite element method for the Stokes problem with zero residual of mass conservation, SIAM J. Sci. Comput., 34, 2, 480-489 (1997) · Zbl 0890.76036
[19] Deang, J. M.; Gunzburger, M. D., Issues related to least-squares finite element methods for the Stokes equations, SIAM J. Sci. Comput., 20, 3, 878-906 (1998) · Zbl 0953.65083
[20] Bolton, P.; Thatcher, R. W., On mass conservation in least-squares methods, J. Comput. Phys., 203, 287-304 (2005) · Zbl 1061.76030
[21] Pontaza, J. P., Least-Squares Variational Principles and the Finite Element Method: Theory, Form, and Model for Solid and Fluid Mechanics (2003), Texas A&M University, (Ph.D. thesis)
[22] Pontaza, J. P.; Reddy, J. N., Spectral/\( h p\) least-squares finite element formulation for the Navier-Stokes equation, J. Comput. Phys., 190, 523-549 (2003) · Zbl 1077.76054
[23] Heys, J. J.; Lee, E.; Manteuffel, T. A.; McCormick, S. F., On mass-conserving least-squares methods, SIAM J. Sci. Comput., 28, 3, 1675-1693 (2006) · Zbl 1388.76052
[24] Heys, J. J.; Lee, E.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J., Enhanced mass conservation in least-squares methods for Navier-Stokes equations, SIAM J. Sci. Comput., 31, 2303-2321 (2009) · Zbl 1188.76195
[25] Nickaeen, M.; Ouazzi, A.; Turek, S., Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations, J. Comput. Phys., 256, 416-427 (2014) · Zbl 1349.76246
[26] Talagrand, O.; Courtier, P., Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Q. J. R. Meteorol. Soc., 113, 478, 1311-1328 (1987)
[27] Blum, J.; Dimet, F.-X. Le; Navon, I. M., Data assimilation for geophysical fluids, (Temam, Roger M.; Tribbia, Joseph J., Special Volume: Computational Methods For The Atmosphere And The Oceans. Special Volume: Computational Methods For The Atmosphere And The Oceans, Handbook of Numerical Analysis, vol. 14 (2009), Elsevier), 385-441 · Zbl 1226.86002
[28] van Leeuwen, P. J., Efficient nonlinear data-assimilation in geophysical fluid dynamics, Comput. Fluids, 46, 1, 52-58 (2011) · Zbl 1305.86002
[29] D’Elia, M.; Veneziani, A., Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem, ESAIM Math. Model. Numer. Anal., 47, 4, 1037-1057 (2013) · Zbl 1271.76062
[30] Bertagna, L.; D’Elia, M.; Perego, M.; Veneziani, A., Data assimilation in cardiovascular fluid-structure interaction problems: An introduction, (Bodnár, Tomáš; Galdi, Giovanni P.; Nečasová, Šárka, Fluid-Structure Interaction And Biomedical Applications (2014), Springer Basel), 395-481 · Zbl 1426.76761
[31] Burman, E.; Oksanen, L., Data assimilation for the heat equation using stabilized finite element methods, Numer. Math., 139, 3, 505-528 (2018) · Zbl 1412.65111
[32] Boulakia, M.; Burman, E.; Fernández, M. A.; Voisembert, C., Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime, Inverse Problems, 36, 8, Article 085003 pp. (2020) · Zbl 1445.35323
[33] Rayner, P. J.; Michalak, A. M.; Chevallier, F., Fundamentals of data assimilation applied to biogeochemistry, Atmos. Chem. Phys., 19, 22, 13911-13932 (2019)
[34] Heys, J. J.; Manteuffel, T. A.; McCormick, S. F.; Milano, M.; Westerdale, J.; Belohlavek, M., Weighted least-squares finite elements based on particle imaging velocimetry data, J. Comput. Phys., 229, 1, 107-118 (2010) · Zbl 1381.76173
[35] Wei, F.; Westerdale, J.; McMahon, E. M.; Belohlavek, M.; Heys, J. J., Weighted least-squares finite element method for cardiac blood flow simulation with echocardiographic data, Comput. Math. Methods Med., Article 371315 pp. (2012) · Zbl 1233.92011
[36] Rajaraman, P. K.; Manteuffel, T. A.; Belohlavek, M.; McMahon, E.; Heys, J. J., Echocardiographic particle imaging velocimetry data assimilation with least square finite element methods, Comput. Math. Appl., 68, 11, 1569-1580 (2014) · Zbl 1365.92055
[37] Rajaraman, P. K.; Manteuffel, T. A.; Belohlavek, M.; Heys, J. J., Combining existing numerical models with data assimilation using weighted least-squares finite element methods, Int. J. Numer. Methods Biomed. Eng., 33, 1, Article e02783 pp. (2017)
[38] Wang, K. C.; Carey, G. F., A least squares finite element method for viscoelastic fluid flow problems, Int. J. Numer. Methods Fluids, 17, 11, 943-953 (1993) · Zbl 0798.76044
[39] Bose, A.; Carey, G. F., Least-squares p-r finite element methods for incompressible non-Newtonian flows, Comput. Methods Appl. Math., 180, 3, 431-458 (1999) · Zbl 0966.76045
[40] Nayak, H. V.; Carey, G. F., Least Square Finite Element Simulation of Viscoelastic Fluid Flow Through 4:1 ContractionTechnical Report (2003), Institute for Computational Engineering and Science, The University of Texas at Austin
[41] Gerritsma, M. I., Direct minimization of the discontinuous least-squares spectral element method for viscoelastic fluids, J. Sci. Comput., 27, 1, 245-256 (2006) · Zbl 1101.76040
[42] Cai, Z.; Westphal, C. R., An adaptive mixed lest-squares finite element method for viscoelastic fluids of oldroyd type, J. Non-Newton. Fluid Mech., 159, 72-80 (2009) · Zbl 1274.76246
[43] Lee, H.-C., A nonlinear weighted least-squares finite element method for the Oldroyd-B viscoelastic flow, Appl. Math. Comput., 219, 42-434 (2012) · Zbl 1291.76206
[44] Zhou, S.; Hou, L., A weighted least-squares finite element method for Phan-Thien-Tanner viscoelastic fluid, J. Math. Anal. Appl., 436, 66-78 (2016) · Zbl 1334.76085
[45] Bell, B. C.; Surana, K. S., P-version least squares finite element formulation for two-dimensional, incompressible, non-Newtonian isothermal and non-isothermal fluid flow, Int. J. Numer. Methods Fluids, 18, 127-162 (1994) · Zbl 0816.76043
[46] Edgar, N. B.; Surana, K. S., p-version least-squares finite-element formulation for axisymmetric incompressible newtonian and non-newtonian fluid flow with heat transfer, Numer. Heat Transfer B, 27, 2, 213-235 (1995)
[47] Surana, K. S.; Engelkemier, M. K.; Reddy, J. N.; Tenpas, P. W., k-version least squares finite element processes for 2-D generalized Newtonian fluid flows, Int. J. Comput. Methods Eng. Sci. Mech., 8, 4, 243-261 (2007) · Zbl 1388.76153
[48] Surana, K. S.; Deshpande, K. M.; Romkes, A.; Reddy, J. N., Computations of numerical solutions in polymer flows using giesekus constitutive model in the hpk framework with variationally consistent integral forms, Int. J. Comput. Methods Eng. Sci. Mech., 10, 5, 317-344 (2009) · Zbl 1423.76040
[49] Chen, T. F.; Cox, C. L.; Lee, H. C.; Tung, K. L., Least-squares finite element methods for generalized Newtonian and viscoelastic flows, Appl. Numer. Math., 60, 1024-1040 (2010) · Zbl 1355.76035
[50] Lee, H.-C., An adaptively refined least-squares finite element method for generalized Newtonian fluid flows using the Carreau model, SIAM J. Sci. Comput., 36, 193-218 (2014) · Zbl 1288.76046
[51] Lee, H.-C., A nonlinear weighted least-squares finite element method for the Carreau-Yasuda non-Newtonian model, J. Math. Anal. Appl., 432, 2, 844-861 (2015) · Zbl 1326.76063
[52] Kim, N.; Reddy, J. N., A spectral/hp least-squares finite element analysis of the Carreau-Yasuda fluids, Int. J. Numer. Methods Fluids, 82, 9, 541-566 (2016)
[53] Kim, N.; Reddy, J. N., Least-squares finite element analysis of flow of a generalized Newtonian fluid past a circular cylinder, Mech. Adv. Mater. Struct., 25, 14, 1186-1196 (2018)
[54] Kim, N.; Reddy, J. N., 3-D least-squares finite element analysis of flows of generalized Newtonian fluids, J. Non-Newton. Fluid Mech., 266, 143-159 (2019)
[55] Schroter, R. C.; Sudlow, M. F., Flow patterns in models of the human bronchial airways, Respir. Physiol., 7, 3, 341-355 (1969)
[56] Stehbens, W. E., Flow in glass models of arterial bifurcations and berry aneurysms at low Reynolds numbers, Q. J. Exp. Physiol. Cogn. Med. Sci., 60, 3, 181-192 (1975)
[57] N. Buchmann, M. Jermy, Particle Image Velocimetry measurements of blood flow in a modeled carotid artery bifurcation, in: Proceedings Of The 16th Australasian Fluid Mechanics Conference, 16AFMC, 2007.
[58] Balzani, D.; Deparis, S.; Fausten, S.; Forti, D.; Heinlein, A.; Klawonn, A.; Quarteroni, A.; Rheinbach, O.; Schröder, J., Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains, Int. J. Numer. Methods Biomed. Eng., 32, 10, Article e02756 pp. (2016)
[59] Gijsen, F. J.H.; van de Vosse, F. N.; Janssen, J. D., The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model, J. Biomech., 32, 6, 601-608 (1999)
[60] Cai, Z.; Lee, B.; Wang, P., Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems, SIAM J. Numer. Anal., 42, 2, 843-859 (2004) · Zbl 1159.76347
[61] Schwarz, A.; Nickaeen, M.; Serdas, S.; Nisters, C.; Ouazzi, A.; Schröder, J.; Turek, S., A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations, Int. J. Comput. Eng. Sci., 17, 1 (2018)
[62] Carreau, P. J., Rheological equations from molecular network theories, Trans. Soc. Rheol., 16, 1, 99-127 (1972)
[63] Bird, R. B.; Armstrong, R. C.; Hassager, O., (Dynamics Of Polymeric Liquids. Dynamics Of Polymeric Liquids, Fluid Mechanics, vol. I (1987), Wiley: Wiley New York)
[64] Kim, H. B.; Hertzberg, J. R.; Shandas, R., Development and validation of echo PIV, Exp. Fluids, 36, 3, 455-462 (2004)
[65] Westerdale, J.; Belohlavek, M.; McMahon, E. M.; Jiamsripong, P.; Heys, J. J.; Milano, M., Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry, J. Ultrasound Med., 30, 2, 187-195 (2011)
[66] Agati, L.; Cimino, S.; Tonti, G.; Cicogna, F.; Petronilli, V.; De Luca, L.; Iacoboni, C.; Pedrizzetti, G., Quantitative analysis of intraventricular blood flow dynamics by echocardiographic particle image velocimetry in patients with acute myocardial infarction at different stages of left ventricular dysfunction, Eur. Heart J. Cardiovasc. Imaging, 15, 11, 1203-1212 (2014)
[67] Matheron, G., Principles of geostatistics, Econ. Geol., 58, 8, 1246-1266 (1963)
[68] Krige, D. G., A statistical approach to some basic mine valuation problems on the Witwatersrand, J. S. Afr. Inst. Min. Metall., 52, 6, 119-139 (1951)
[69] Cressie, N., The origins of kriging, Math. Geol., 22, 3, 239-252 (1990) · Zbl 0964.86511
[70] Stein, M. L., Interpolation Of Spatial Data: Some Theory For Kriging (1999), Springer: Springer New York · Zbl 0924.62100
[71] Chilès, J.-P.; Delfiner, P., Geostatistics: Modeling Spatial Uncertainty (1999), Wiley · Zbl 0922.62098
[72] Wackernagel, H., Ordinary kriging, (Multivariate Geostatistics: An Introduction With Applications (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 79-88 · Zbl 1015.62128
[73] Oliver, M.; Webster, R., Basic Steps In Geostatistics: The Variogram And Kriging (2015)
[74] Chilès, J.-P.; Desassis, N., Handbook of mathematical geosciences, (Daya Sagar, B.; Cheng, Q.; Agterberg, F. (2018), Springer: Springer Cham.) · Zbl 1391.86001
[75] Dwight, R. P., Bayesian inference for data assimilation using Least-Squares Finite Element methods, IOP Conf. Ser.: Mater. Sci. Eng., 10, Article 012224 pp. (2010)
[76] Schwarz, A.; Dwight, R. P., Data assimilation for Navier-Stokes using the least-squares finite-element method, Int. J. Uncertain. Quantif., 8, 5, 383-403 (2018) · Zbl 1498.76054
[77] Korelc, J., Automatic generation of finite-element code by simultaneous optimization of expressions, Theoret. Comput. Sci., 187, 1, 231-248 (1997) · Zbl 0893.68084
[78] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput., 18, 4, 312-327 (2002)
[79] Korelc, J., Automation of primal and sensitivity analysis of transient coupled problems, Comput. Mech., 44, 631-649 (2009) · Zbl 1171.74043
[80] Korelc, J.; Wriggers, P., Automation Of Finite Element Methods (2016), Springer International Publishing Switzerland · Zbl 1367.74001
[81] Hudobivnik, B.; Korelc, J., Closed-form representation of matrix functions in the formulation of nonlinear material models, Finite Elem. Anal. Des., 111, 19-32 (2016)
[82] Wolfram Research, Inc., Mathematica, version 13.0.0 (2021), Champaign, IL
[83] Kwack, J.; Masud, A., A stabilized mixed finite element method for shear-rate dependent non-Newtonian fluids: 3D benchmark problems and application to blood flow in bifurcating arteries, Comput. Mech., 53, 4, 751-776 (2014) · Zbl 1398.76112
[84] Bharadvaj, B. K.; Mabon, R. F.; Giddens, D. P., Steady flow in a model of the human carotid bifurcation. Part I - Flow visualization, J. Biomech., 15, 5, 349-362 (1982)
[85] Bharadvaj, B. K.; Mabon, R. F.; Giddens, D. P., Steady flow in a model of the human carotid bifurcation. Part II—Laser-Doppler anemometer measurements, J. Biomech., 15, 5, 363-378 (1982)
[86] Ku, D. N.; Giddens, D. P.; Zarins, C. K.; Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, 5, 3, 293-302 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.