×

Evaluating the Evans function: order reduction in numerical methods. (English) Zbl 1127.65074

Summary: We consider the numerical evaluation of the Evans function, a Wronskian-like determinant that arises in the study of the stability of travelling waves. Constructing the Evans function involves matching the solutions of a linear ordinary differential equation depending on the spectral parameter. The problem becomes stiff as the spectral parameter grows. Consequently, the Gauss-Legendre method has previously been used for such problems; however more recently, methods based on the Magnus expansion have been proposed.
Here we extensively examine the stiff regime for a general scalar Schrödinger operator. We show that although the fourth-order Magnus method suffers from order reduction, a fortunate cancellation when computing the Evans matching function means that fourth-order convergence in the end result is preserved. The Gauss-Legendre method does not suffer from order reduction, but it does not experience the cancellation either, and thus it has the same order of convergence in the end result. Finally we discuss the relative merits of both methods as spectral tools.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations

Software:

RODAS; RCMS

References:

[1] Andrei L. Afendikov and Thomas J. Bridges, Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2006, 257 – 272. · Zbl 0984.76022 · doi:10.1098/rspa.2000.0665
[2] J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167 – 212. · Zbl 0705.35070
[3] Nairo D. Aparicio, Simon J. A. Malham, and Marcel Oliver, Numerical evaluation of the Evans function by Magnus integration, BIT 45 (2005), no. 2, 219 – 258. · Zbl 1078.65549 · doi:10.1007/s10543-005-0001-8
[4] Thomas J. Bridges, Gianne Derks, and Georg Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Phys. D 172 (2002), no. 1-4, 190 – 216. · Zbl 1047.37053 · doi:10.1016/S0167-2789(02)00655-3
[5] L. Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. thesis, Indiana University, 1998. · Zbl 0980.65092
[6] Leon Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp. 70 (2001), no. 235, 1071 – 1088. · Zbl 0980.65092
[7] Philip J. Davis and Philip Rabinowitz, Numerical integration, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. · Zbl 1139.65016
[8] Ilan Degani and Jeremy Schiff, RCMS: right correction Magnus series approach for oscillator ODEs, J. Comput. Appl. Math. 193 (2006), no. 2, 413 – 436. · Zbl 1093.65071 · doi:10.1016/j.cam.2005.07.001
[9] Kenth Engø, On the construction of geometric integrators in the RKMK class, BIT 40 (2000), no. 1, 41 – 61. · Zbl 0955.65047 · doi:10.1023/A:1022362117414
[10] John W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ. Math. J. 24 (1974/75), no. 12, 1169 – 1190. · Zbl 0317.92006 · doi:10.1512/iumj.1975.24.24096
[11] M. Facão and D. F. Parker, Stability of screening solitons in photorefractive media, Phys. Rev. E 68 (2003), no. 1, 016610.
[12] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 353-369. · JFM 63.1111.04
[13] C. González, A. Ostermann, and M. Thalhammer, A second-order Magnus-type integrator for nonautonomous parabolic problems, J. Comput. Appl. Math. 189 (2006), no. 1-2, 142 – 156. · Zbl 1089.65043 · doi:10.1016/j.cam.2005.04.036
[14] Leon Greenberg and Marco Marletta, Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems, SIAM J. Numer. Anal. 38 (2001), no. 6, 1800 – 1845. · Zbl 1001.34020 · doi:10.1137/S0036142999358743
[15] V. V. Gubernov, G. N. Mercer, H. S. Sidhu, and R. O. Weber, Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2048, 2415 – 2435. · Zbl 1063.80008 · doi:10.1098/rspa.2004.1285
[16] E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd ed., Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1996. Stiff and differential-algebraic problems. · Zbl 0859.65067
[17] Marlis Hochbruck and Christian Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003), no. 3, 945 – 963. · Zbl 1049.65064 · doi:10.1137/S0036142902403875
[18] Arieh Iserles, A first course in the numerical analysis of differential equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1996. · Zbl 1171.65060
[19] Arieh Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT 42 (2002), no. 3, 561 – 599. · Zbl 1027.65107 · doi:10.1023/A:1022049814688
[20] Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, and Antonella Zanna, Lie-group methods, Acta numerica, 2000, Acta Numer., vol. 9, Cambridge Univ. Press, Cambridge, 2000, pp. 215 – 365. · Zbl 1064.65147 · doi:10.1017/S0962492900002154
[21] Lucas Jódar and Marco Marletta, Solving ODEs arising from non-selfadjoint Hamiltonian eigenproblems, Adv. Comput. Math. 13 (2000), no. 3, 231 – 256. · Zbl 0947.65092 · doi:10.1023/A:1018954227133
[22] Todd Kapitula and Björn Sandstede, Edge bifurcations for near integrable systems via Evans function techniques, SIAM J. Math. Anal. 33 (2002), no. 5, 1117 – 1143. · Zbl 1092.37048 · doi:10.1137/S0036141000372301
[23] A. Kolmogorov, I. Petrovsky, and N. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de matiére et son application à un probléme biologique, Bull. Univ. d’État à Moscou, Série Internationale, A 1 (1937), 1-25.
[24] Wilhelm Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math. 7 (1954), 649 – 673. · Zbl 0056.34102 · doi:10.1002/cpa.3160070404
[25] P. C. Moan, Efficient approximation of Sturm-Liouville problems using Lie-group methods, Tech. Report 1998/NA11, DAMTP, University of Cambridge, UK, 1998.
[26] P. C. Moan and J. Niesen, Convergence of the Magnus series, Submitted, 2006. arXiv:math/0609198 · Zbl 1154.34307
[27] Cleve Moler and Charles Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), no. 1, 3 – 49. · Zbl 1030.65029 · doi:10.1137/S00361445024180
[28] J. D. Murray, Mathematical biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. · Zbl 0682.92001
[29] J. Niesen, On the global error committed when evaluating the Evans function numerically, Tech. Report HWM 06/43, Dept of Mathematics, Heriot-Watt University, 2006. arXiv:math/0611855
[30] Robert L. Pego and Michael I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London Ser. A 340 (1992), no. 1656, 47 – 94. · Zbl 0776.35065 · doi:10.1098/rsta.1992.0055
[31] A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comp. 28 (1974), 145 – 162. · Zbl 0309.65034
[32] John D. Pryce, Numerical solution of Sturm-Liouville problems, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. · Zbl 0795.65053
[33] Björn Sandstede, Stability of travelling waves, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 983 – 1055. · Zbl 1056.35022 · doi:10.1016/S1874-575X(02)80039-X
[34] Jonathan Swinton and John Elgin, Stability of travelling pulse solutions to a laser equation, Phys. Lett. A 145 (1990), no. 8-9, 428 – 433. · doi:10.1016/0375-9601(90)90307-A
[35] David Terman, Stability of planar wave solutions to a combustion model, SIAM J. Math. Anal. 21 (1990), no. 5, 1139 – 1171. · Zbl 0723.35011 · doi:10.1137/0521063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.