×

Homogenisation on homogeneous spaces. (English) Zbl 1416.58014

Consider a Lie group \(G\), a compact Lie subgroup \(H\), their Lie algebras \(\mathfrak g\), \(h\) respectively, an \(\mathrm{Ad}_H\)-invariant Lie subalgebra \(\mathfrak{m}\) such that \(\mathfrak{g} = h\oplus m\), a generating subset \(\{A_0,\ldots,A_N\}\subset \mathfrak{h}\), and \(\,Y_0\in \mathfrak{m}\). Then the canonical projection \(\pi : G\to G/H\) makes \(G\) into a principal bundle over the homogeneous manifold \(M:=G/H\).
Denote by \((b^1_t,\ldots,b_t^N)\) an \(N\)-dimensional Euclidean Brownian motion. For any small positive \(\varepsilon\), let \((g_t^\varepsilon)\) be the solution to the Stratonovitch SDE
\[ g_t^\varepsilon = g_0 + \varepsilon^{-1/2}\sum_{k=1}^N\int_0^t A_k(g_s^\varepsilon)\circ db_s^k +\varepsilon^{-1}\!\int_0^t A_0(g_s^\varepsilon)\, ds + \int_0^t Y_0(g_s^\varepsilon)\, ds, \] where as usual any \(V\in \mathfrak{g}\) is identified with the left-invariant vector field it generates. Thus, \((g_t^\varepsilon)\) is a diffusion with generator \(\varepsilon^{-1}\mathcal{L}_0+Y_0\), where \(\frac{\mathcal L_0 := 1}{2\sum_{k=1}^NA_k^2+A_0}\). No Hörmander condition is required. Let \(x_t^\varepsilon:= \pi(g_t^\varepsilon)\).
The author considers the lift \(u_t^\varepsilon\in G\) above \(x_t^\varepsilon\), which be horizontal with respect to the Ehresmann connection determined by \(\mathfrak{m}\), and also the vertical semimartingale \((u_t^\varepsilon)^{-1} g_t^\varepsilon\in H\). She computes SDE’s governing both processes.
Her main result is the weak convergence, as \(\varepsilon\searrow 0\), of the scaled semimartingale \((u_{t/\varepsilon}^\varepsilon)\), towards some diffusion process, with an explicit expression for the limiting generator.
Moreover, this convergence is proved to hold in Wasserstein distance as well, and a rate of convergence is given. Furthermore, conditions are given which ensure that the limiting diffusion is a scaled Brownian motion, with some computable scale. Finally, some examples are discussed.

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
60J60 Diffusion processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] M. Arnaudon, Semi-martingales dans les espaces homogènes, Ann. Inst. H. Poincaré Probab. Statist., 29 (1993), 269-288. · Zbl 0779.60045
[2] L. Bérard-Bergery and J.-P. Bourguignon, Laplacians and Riemannian submersions with totally geodesic fibres, Illinois J. Math., 26 (1982), 181-200. · Zbl 0483.58021
[3] M. Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France, 83 (1955), 279-330. · Zbl 0068.36002
[4] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, 1992. · Zbl 0744.58001
[5] J. Berndt and L. Vanhecke, Geometry of weakly symmetric spaces, J. Math. Soc. Japan, 48 (1996), 745-760. · Zbl 0877.53027 · doi:10.2969/jmsj/04840745
[6] A. L. Besse, Einstein manifolds, 10, Springer-Verlag, Berlin, 1987. · Zbl 0613.53001
[7] J.-M. Bismut, The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal., 255 (2008), 2190-2232. · Zbl 1183.43005 · doi:10.1016/j.jfa.2008.07.017
[8] J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, Ann. of Math. Studies, 177, Princeton University Press, Princeton, NJ, 2011. · Zbl 1234.58001
[9] J.-M. Bismut and G. Lebeau, Laplacien hypoelliptique et torsion analytique, C. R. Math. Acad. Sci. Paris, 341 (2005), 113-118. · Zbl 1073.58024 · doi:10.1016/j.crma.2005.06.003
[10] A. N. Borodin and M. I. Freidlin, Fast oscillating random perturbations of dynamical systems with conservation laws, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), 485-525. · Zbl 0831.60066
[11] F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, LNIM, 1424, Springer-Verlag, 1990. · Zbl 0699.53059
[12] J. Cheeger and M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, I, J. Differential Geom., 23 (1986), 309-346. · Zbl 0606.53028 · doi:10.4310/jdg/1214440117
[13] E. B. Dynkin, Markov processes, I, II, (Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone), Die Grundlehren der Mathematischen Wissenschaften, Bände 121, 122, Academic Press Inc., Publishers, Springer-Verlag, 1965. · Zbl 0132.37901
[14] J. Eells and K. D. Elworthy, Stochastic dynamical systems, In: Control theory and topics in functional analysis (Internat. Sem., Internat. Centre Theoret. Phys., Trieste, 1974), III, Internat. Atomic Energy Agency, Vienna, 1976, 179-185. · Zbl 0355.60053
[15] K. D. Elworthy, Stochastic differential equations on manifolds, London Math. Soc. Lecture Note Series, 70, Cambridge University Press, Cambridge, 1982. · Zbl 0514.58001
[16] K. D. Elworthy, Y. Le Jan and X.-M. Li, On the geometry of diffusion operators and stochastic flows, Lecture Notes in Math., 1720, Springer-Verlag, 1999. · Zbl 0942.58004
[17] K. D. Elworthy, Y. Le Jan and X.-M. Li, The geometry of filtering, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010. · Zbl 1219.58017
[18] M. Freidlin, Markov processes and differential equations: asymptotic problems, Lectures in Math., ETH Zürich, Birkhäuser Verlag, Basel, 1996. · Zbl 0863.60049
[19] M. Freidlin and M. Weber, On stochasticity of solutions of differential equations with a small delay, Stoch. Dyn., 5 (2005), 475-486. · Zbl 1093.34045 · doi:10.1142/S0219493705001547
[20] M. I. Freidlin and A. D. Wentzell, Diffusion processes on graphs and the averaging principle, Ann. Probab., 21 (1993), 2215-2245. · Zbl 0795.60042 · doi:10.1214/aop/1176989018
[21] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547. · Zbl 0589.58034 · doi:10.1007/BF01389241
[22] I. I. Gonzales-Gargate and P. R. Ruffino, An averaging principle for diffusions in foliated spaces, Ann. Probab., 44 (2016), 567-588. · Zbl 1462.60074 · doi:10.1214/14-AOP982
[23] V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Foundations of Lie theory and Lie transformation groups, Springer-Verlag, Berlin, 1997. · Zbl 0999.17500
[24] R. Z. Has’minskii, Stochastic processes defined by differential equations with a small parameter, Teor. Verojatnost. i Primenen, 11 (1966), 240-259.
[25] E. Heintze and W. Ziller, Isotropy irreducible spaces and \(s\)-representations, Differential Geom. Appl., 6 (1996), 181-188. · Zbl 0845.53036 · doi:10.1016/0926-2245(96)89148-0
[26] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York-London, 1962. · Zbl 0111.18101
[27] M. Högele and P. Ruffino, Averaging along foliated Lévy diffusions, Nonlinear Anal., 112 (2015), 1-14. · Zbl 1301.60067
[28] D. Holm, J. Marsden, T. Ratiu and A. Weinstein, Stability of rigid body motion using the energy-Casimir method, In: Fluids and plasmas: geometry and dynamics, Amer. Math. Soc., 1984, 15-23. · Zbl 0526.70025
[29] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. · Zbl 0156.10701
[30] L. Hörmander, The analysis of linear partial differential operators, I, Distribution theory and Fourier analysis, 256, Springer-Verlag, Berlin, second edition, 1990. · Zbl 0712.35001
[31] N. Ikeda and Y. Ogura, A degenerating sequence of Riemannian metrics on a manifold and their Brownian motions, In: Diffusion processes and related problems in analysis, I, Progr. Probab., 22, Birkhäuser Boston, 1990, 293-312. · Zbl 0742.58058
[32] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Publishing Co., second edition, 1989. · Zbl 0684.60040
[33] N. Iwahori, On real irreducible representations of Lie algebras, Nagoya Math. J., 14 (1959), 59-83. · Zbl 0101.02401 · doi:10.1017/S0027763000005778
[34] A. Kasue and H. Kumura, Spectral convergence of Riemannian manifolds, Tohoku Math. J. (2), 46 (1994), 147-179. · Zbl 0814.53035 · doi:10.2748/tmj/1178225756
[35] S. Kobayashi, Transformation groups in differential geometry, Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. · Zbl 0829.53023
[36] S. Kobayashi and K. Nomizu, Foundations of differential geometry, I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. · Zbl 0119.37502
[37] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7 (1940), 284-304. · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[38] T. G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc., 148 (1970), 23-32. · Zbl 0194.44103 · doi:10.1090/S0002-9947-1970-0256210-5
[39] J.-A. Lázaro-Camí and J.-P. Ortega, Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations, Stoch. Dyn., 9 (2009), 1-46. · Zbl 1187.60045
[40] X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21 (2008), 803-822. · Zbl 1140.60033 · doi:10.1088/0951-7715/21/4/008
[41] X.-M. Li, Effective diffusions with intertwined structures, arxiv:1204.3250, 2012.
[42] X.-M. Li, Random perturbation to the geodesic equation, Annals of Probability, 44 (2015), 544-566. · Zbl 1372.60083
[43] X.-M. Li, Limits of random differential equations on manifolds, Probab. Theory Relat. Fields, 166 (2016), 659-712. · Zbl 1356.60056
[44] M. Liao and L. Wang, Average under the Iwasawa transformation, Proc. Amer. Math. Soc., 135 (2007), 895-901. · Zbl 1171.22011 · doi:10.1090/S0002-9939-06-08508-X
[45] P. Malliavin, Géométrie différentielle stochastique, Séminaire de Mathématiques Supérieures 64, Presses de l’Université de Montréal, 1978, Notes prepared by Danièle Dehen and Dominique Michel. · Zbl 0393.60062
[46] J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian reduction by stages, Lecture Notes in Math., 1913, Springer, Berlin, 2007. · Zbl 1129.37001
[47] R. R. Mazzeo and R. B. Melrose, The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration, J. Differential Geom., 31 (1990), 185-213. · Zbl 0702.58007 · doi:10.4310/jdg/1214444094
[48] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329. · Zbl 0341.53030 · doi:10.1016/S0001-8708(76)80002-3
[49] D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math. (2), 44 (1943), 454-470. · Zbl 0063.04077 · doi:10.2307/1968975
[50] S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2), 40 (1939), 400-416. · Zbl 0021.06303 · doi:10.2307/1968928
[51] E. Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, NJ, 1967. · Zbl 0165.58502
[52] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954), 33-65. · Zbl 0059.15805 · doi:10.2307/2372398
[53] M. Obata, On subgroups of the orthogonal group, Trans. Amer. Math. Soc., 87 (1958), 347-358. · Zbl 0080.02204 · doi:10.1090/S0002-9947-1958-0095205-6
[54] Y. Ogura and S. Taniguchi, A probabilistic scheme for collapse of metrics, J. Math. Kyoto Univ., 36 (1996), 73-92. · Zbl 1002.58521 · doi:10.1215/kjm/1250518605
[55] G. C. Papanicolaou and W. Kohler, Asymptotic theory of mixing stochastic ordinary differential equations, Comm. Pure Appl. Math., 27 (1974), 641-668. · Zbl 0277.60045 · doi:10.1002/cpa.3160270503
[56] G. C. Papanicolaou and S. R. S. Varadhan, A limit theorem with strong mixing in Banach space and two applications to stochastic differential equations, Comm. Pure Appl. Math., 26 (1973), 497-524. · Zbl 0253.60065 · doi:10.1002/cpa.3160260405
[57] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), 20 (1956), 47-87. · Zbl 0072.08201
[58] I. Shigekawa, On stochastic horizontal lifts, Z. Wahrsch. Verw. Gebiete, 59 (1982), 211-221. · Zbl 0487.60056 · doi:10.1007/BF00531745
[59] J. Simons, On the transitivity of holonomy systems, Ann. of Math. (2), 76 (1962), 213-234. · Zbl 0106.15201 · doi:10.2307/1970273
[60] R. L. Stratonovich, A limit theorem for solutions of differential equations with random right-hand side, Theory Prob. Appl., 11, 1960.
[61] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. J. (2), 31 (1979), 179-185. · Zbl 0393.53024
[62] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math., 59 (1986), 57-71. · Zbl 0615.53040
[63] J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math., 120 (1968), 59-148. · Zbl 0157.52102 · doi:10.1007/BF02394607
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.