×

Reduction and integrability of stochastic dynamical systems. (English. Russian original) Zbl 1373.37126

J. Math. Sci., New York 225, No. 4, 681-706 (2017); translation from Fundam. Prikl. Mat. 20, No. 3, 213-249 (2015).
Summary: This paper is devoted to the study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction, and integrability. In particular, we show that an SDS that is diffusion-wise symmetric with respect to a proper Lie group action can be diffusion-wise reduced to an SDS on the quotient space. We also show necessary and sufficient conditions for an SDS to be projectable via a surjective map. We then introduce the notion of integrability of SDS’s, and extend the results on the existence and structure-preserving property of Liouville torus actions from the classical case to the case of integrable SDS’s. We also show how integrable SDS’s are related to compatible families of integrable Riemannian metrics on manifolds.

MSC:

37H10 Generation, random and stochastic difference and differential equations
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests

References:

[1] S. Albeverio and S. Fei, “Remark on symmetry of stochastic dynamical systems and their conserved quantities,” J. Phys. A, 28, 6363-6371 (1995). · Zbl 0877.60044 · doi:10.1088/0305-4470/28/22/012
[2] J.-M. Bismut, Mecanique Aleatoire, Lect. Notes Math., Vol. 866, Springer, Berlin (1981). · Zbl 0457.60002
[3] M. Blaszak, Z. Domański, A. Sergyeyev, and B. Szablikowski, “Integrable quantum Stäckel systems,” Phys. Lett. A, 377, No. 38, 2564-2572 (2013). · Zbl 1311.37054 · doi:10.1016/j.physleta.2013.08.005
[4] A. V. Bolsinov and V. S. Matveev, “Geometrical interpretation of Benenti systems,” J. Geom. Phys., 44, No. 4, 489-506 (2003). · Zbl 1010.37035 · doi:10.1016/S0393-0440(02)00054-2
[5] A. N. Borodin and M. I. Freidlin, “Fast oscillating random perturbations of dynamical systems with conservation laws,” Ann. Inst. H. Poincaré Probab. Stat., 31, No. 3, 485-525 (1995). · Zbl 0831.60066
[6] C. Duval and G. Valent, “Quantum integrability of quadratic Killing tensors,” J. Math. Phys., 46, No. 5, 053516 (2005). · Zbl 1110.81116
[7] A. T. Fomenko and A. V. Bolsinov, Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton (2004). · Zbl 1056.37075
[8] M. Freidlin and M. Weber, “Random perturbations of dynamical systems and diffusion processes with conservation laws,” Probab. Theory Relat. Fields, 128, No. 3, 441-466 (2004). · Zbl 1044.60044 · doi:10.1007/s00440-003-0312-0
[9] A. R. Galmarino, “Representation of an isotropic diffusion as a skew product,” Z. Wahrsch. Verw. Gebiete, 1, No. 4, 359-378 (1963). · Zbl 0109.36303 · doi:10.1007/BF00533411
[10] M. Gitterman, The Noisy Oscillator: The First Hundred Years, from Einstein until Now, World Scientific, New York (2005). · Zbl 1145.34002 · doi:10.1142/5949
[11] K. Grove, H. Karcher, and E. A. Ruh, “Group actions and curvature,” Invent. Math., 23, 31-48 (1974). · Zbl 0271.53044 · doi:10.1007/BF01405201
[12] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Math. Lib., Vol. 24, North-Holland (1981). · Zbl 0495.60005
[13] B. Jovanovic, “Symmetries and integrability,” Publ. Inst. Math. (Beograd), 84 (98), 1-36 (2008). · Zbl 1277.70001
[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, Cambridge (1997). · Zbl 0865.60043
[15] J.-A. Lázaro-Camíand J.-P. Ortega, “Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations,” Stoch. Dyn., 9, No. 1, 1-46 (2009). · Zbl 1187.60045 · doi:10.1142/S0219493709002531
[16] Xue-Mei Li, “An averaging principle for a completely integrable stochastic Hamiltonian system,” Nonlinearity, 21, No. 4, 803-822 (2008). · Zbl 1140.60033 · doi:10.1088/0951-7715/21/4/008
[17] M. Liao, “A decomposition of Markov processes via group action,” J. Theor. Probab., 22, No. 1, 164-185 (2009). · Zbl 1160.60328 · doi:10.1007/s10959-008-0162-x
[18] J. Liouville, “Note sur l’intégration des équations différentielles de la dynamique,” J. Math. Pures Appl., 20 137-138 (1855).
[19] L. Markus and A. Weerasinghe, “Stochastic oscillators,” J. Differ. Equ., 71, No. 2, 288-314 (1988). · Zbl 0651.60067 · doi:10.1016/0022-0396(88)90029-0
[20] V. S. Matveev, “Quantum integrability of the Beltrami-Laplace operator for geodesically equivalent metrics,” Russ. Math. Dokl., 61, No. 2 216-219 (2000). · Zbl 1047.58004
[21] T. Misawa, “Conserved quantities and symmetries related to stochastic dynamical systems,” Ann. Inst. Stat. Math., 51, No. 4, 779-802 (1999). · Zbl 1010.37030 · doi:10.1023/A:1004095516648
[22] B. Øksendal, Stochastic Differential Equations, Springer, Berlin (2003). · Zbl 1025.60026 · doi:10.1007/978-3-642-14394-6
[23] E. J. Pauwels and L. C. G. Rogers, “Skew-product decompositions of Brownian motions,” Contemp. Math., 73, 237-262 (1988). · Zbl 0656.58034 · doi:10.1090/conm/073/954643
[24] M. Taylor, Pseudodifferential Operators, Springer, New York (1996). · doi:10.1007/978-1-4757-4187-2_1
[25] N. T. Zung, “Torus actions and integrable systems,” in: Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., Cambridge (2006), pp. 289-328. · Zbl 1329.37054
[26] N. T. Zung, “A general approach to the problem of action-angle variables,” in preparation (see also the earlier version: “Action-angle variables on Dirac manifolds,” arXiv:1204.3865).
[27] N. T. Zung and N. T. Thien, “Physics-like second-order models of financial assets prices,” in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.