×

Concatenation of nonhonest Feller processes, exit laws, and limit theorems on graphs. (English) Zbl 1528.60043

Summary: We provide a rather explicit formula for the resolvent of a concatenation of \(N\) processes in terms of their exit laws and certain probability measures characterizing the way the processes are concatenated. As an application, we prove an averaging principle saying that by concatenating asymptotically splittable processes one can approximate Markov chains.

MSC:

60G53 Feller processes
35B25 Singular perturbations in context of PDEs
35F46 Initial-boundary value problems for systems of linear first-order PDEs
35K57 Reaction-diffusion equations
60J35 Transition functions, generators and resolvents
47D06 One-parameter semigroups and linear evolution equations
47D07 Markov semigroups and applications to diffusion processes

Software:

Khan Academy

References:

[1] Khan Academy, Diffusion and Passive Transport, https://www.khanacademy.org/science/biology/membranes-and-transport/passive-transport/a/diffusion-and-passive-transport.
[2] Alon, U., An Introduction to Systems Biology. Design Principles of Biological Circuts, Chapman & Hall/CRC, Boca Raton, FL, 2007.
[3] Andrews, S. S., Accurate particle-based simulation of adsorption, desorption and partial transmission, Phys. Biol., 6 (2010), 046015.
[4] Arendt, W., Semigroups and Evolution Equations: Functional Calculus, Regularity and Kernel Estimates, in Evolutionary Equations: Handbook of Differential Equations, Dafermos, C. M. and Feireisl, E., eds., Elsevier, Amsterdam, 2004, pp. 1-85, http://www.sciencedirect.com/science/article/pii/S1874571704800033. · Zbl 1082.35001
[5] Arendt, W., Batty, C. J. K., Hieber, M., and Neubrander, F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2001. · Zbl 0978.34001
[6] Arendt, W., Kunkel, S., and Kunze, M., Diffusion with nonlocal boundary conditions, J. Funct. Anal., 270 (2016), pp. 2483-2507, doi:10.1016/j.jfa.2016.01.025. · Zbl 1337.47062
[7] Arendt, W., Kunkel, S., and Kunze, M., Diffusion with nonlocal Robin boundary conditions, J. Math. Soc. Japan, 70 (2018), pp. 1523-1556, doi:10.2969/jmsj/76427642. · Zbl 1469.35101
[8] Banasiak, J. and Arlotti, L., Perturbations of Positive Semigroups with Applications, Springer, New York, 2006. · Zbl 1097.47038
[9] Banasiak, J. and Bobrowski, A., A semigroup related to a convex combination of boundary conditions obtained as a result of averaging other semigroups, J. Evol. Equ., 15 (2015), pp. 223-237, doi:10.1007/s00028-014-0257-z. · Zbl 1325.47085
[10] Banasiak, J., Falkiewicz, A., and Namayanja, P., Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, Math. Models Methods Appl. Sci., 26 (2016), pp. 215-247, doi:10.1142/S0218202516400017. · Zbl 1355.92084
[11] Banasiak, J., Falkiewicz, A., and Namayanja, P., Semigroup approach to diffusion and transport problems on networks, Semigroup Forum, 93 (2016), pp. 427-443. · Zbl 1358.90018
[12] Banasiak, J., Goswami, A., and Shindin, S., Aggregation in age and space structured population models: An asymptotic analysis approach, J. Evol. Equ., 11 (2011), pp. 121-154. · Zbl 1241.35206
[13] Banasiak, J., Lamb, W., and Laurencot, P., Analytic Methods for Coagulation-Fragmentation Models, CRC Press, Boca Raton, FL, 2019. · Zbl 1434.82001
[14] Bass, R. F., Stochastic Processes, , Cambridge University Press, Cambridge, UK, 2011, doi:10.1017/CBO9780511997044. · Zbl 1247.60001
[15] Beznea, L. and Boboc, N., Potential Theory and Right Processes, , Kluwer, Dordrecht, 2004, doi:10.1007/978-1-4020-2497-9. · Zbl 1091.31010
[16] Binz, T. and Engel, K.-J., Operators with Wentzell boundary conditions and the Dirichlet-to-Neumann operator, Math. Nachr., 292 (2019), pp. 733-746, doi:10.1002/mana.201800064. · Zbl 1422.35014
[17] Blumenthal, R. M., Excursions of Markov Processes, Probab. Appl., Birkhäuser Boston, Boston, MA, 1992, doi:10.1007/978-1-4684-9412-9. · Zbl 0983.60504
[18] Bobrowski, A., Degenerate convergence of semigroups, Semigroup Forum, 49 (1994), pp. 303-327. · Zbl 0817.47047
[19] Bobrowski, A., Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, UK, 2005, doi:10.1017/CBO9780511614583. · Zbl 1092.46001
[20] Bobrowski, A., From diffusions on graphs to Markov chains via asymptotic state lumping, Ann. Henri Poincaré, 13 (2012), pp. 1501-1510. · Zbl 1278.60110
[21] Bobrowski, A., Emergence of Freidlin-Wentzell’s transmission conditions as a result of a singular perturbation of a semigroup, Semigroup Forum, 92 (2015), pp. 1-22, doi:10.1007/s00233-015-9729-x. · Zbl 1361.47011
[22] Bobrowski, A., Convergence of one-parameter operator semigroups, in Models of Mathematical Biology and Elsewhere, , Cambridge University Press, Cambridge, UK, 2016, doi:10.1017/CBO9781316480663. · Zbl 1345.47001
[23] Bobrowski, A., Generators of Markov Chains. From a Walk in the Interior to a Dance on the Boundary, Cambridge University Press, Cambridge, UK, 2020.
[24] Bobrowski, A., Modeling diffusion in thin 2D layers separated by a semi-permeable membrane, SIAM J. Math. Anal., 52 (2020), pp. 3222-3251, doi:10.1137/19M1291443. · Zbl 1444.35017
[25] Bobrowski, A., Semigroup-theoretic approach to diffusion in thin layers separated by semi-permeable membranes, J. Evol. Equ., 21 (2021), pp. 1019-1057, https://link.springer.com/article/10.1007/s00028-020-00617-7. · Zbl 1462.35028
[26] Bobrowski, A., Kaźmierczak, B., and Kunze, M., An averaging principle for fast diffusions in domains separated by semi-permeable membranes, Math. Models Methods Appl. Sci., 27 (2017), pp. 663-706, doi:10.1142/S0218202517500130. · Zbl 06722487
[27] Bobrowski, A. and Kunze, M., Irregular convergence of mild solutions of semilinear equations, J. Math. Anal. Appl., 472 (2019), pp. 1401-1419, doi:10.1016/j.jmaa.2018.11.082. · Zbl 1411.34085
[28] Bobrowski, A. and Morawska, K., From a PDE model to an ODE model of dynamics of synaptic depression, Discrete Cont. Dyn. Syst. Ser. B, 17 (2012), pp. 2313-2327. · Zbl 1275.92008
[29] Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., and Vondraček, Z., Potential Analysis of Stable Processes and Its Extensions, , Springer-Verlag, Berlin, 2009, doi:10.1007/978-3-642-02141-1.
[30] Bogdan, K. and Jakubowski, T., Estimates of the green function for the fractional Laplacian perturbed by gradient, Potential Anal., 36 (2012), pp. 455-481, doi:10.1007/s11118-011-9237-x. · Zbl 1238.35018
[31] Bogdan, K., Rosiński, J., Serafin, G., and Wojciechowski, Ł., Lévy systems and moment formulas for mixed Poisson integrals, in Stochastic Analysis and Related Topics, , Birkhäuser/Springer, Cham, 2017, pp. 139-164, doi:10.1007/978-3-319-59671-6_7. · Zbl 1409.60074
[32] Chung, K. L., Lectures on Boundary Theory for Markov Chains, , Princeton University Press, Princeton, NJ, 1970. · Zbl 0204.51003
[33] Chung, K. L., Lectures from Markov Processes to Brownian Motion, , Springer-Verlag, Berlin, 1982. · Zbl 0503.60073
[34] Chung, K. L., Doubly-Feller process with multiplicative functional, in Seminar on Stochastic Processes, 1985, , Birkhäuser Boston, Boston, MA, 1986, pp. 63-78. · Zbl 0603.60066
[35] Doob, J. L., Classical Potential Theory and Its Probabilistic Counterpart, , Springer-Verlag, Berlin, 1984. · Zbl 0549.31001
[36] Emelyanov, E. Yu, Non-spectral Asymptotic Analysis of One-Parameter Operator Semigroups, , Birkhäuser Verlag, Basel, 2007. · Zbl 1117.47001
[37] Engel, K.-J. and Kramar Fijavž, M., Waves and diffusion on metric graphs with general vertex conditions, Evol. Equ. Control Theory, 8 (2019), pp. 633-661, doi:10.3934/eect.2019030. · Zbl 1514.47066
[38] Engel, K.-J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000. · Zbl 0952.47036
[39] Ethier, S. N. and Kurtz, T. G., Markov Processes. Characterization and Convergence, Wiley, New York, 1986. · Zbl 0592.60049
[40] Feller, W., Diffusion processes in genetics, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 1951, pp, 227-246. · Zbl 0045.09302
[41] Feller, W., The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), pp. 468-519. · Zbl 0047.09303
[42] Feller, W., Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc., 83 (1956), pp. 19-54, doi:10.2307/1992904. · Zbl 0071.34901
[43] Feller, W., Generalized second order differential operators and their lateral conditions, Illinois J. Math., 1 (1957), pp. 459-504, http://projecteuclid.org/euclid.ijm/1255380673. · Zbl 0077.29102
[44] Feller, W., On boundaries and lateral conditions for the Kolmogorov differential equations, Ann. of Math (2), 65 (1957), pp. 527-570, doi:10.2307/1970064. · Zbl 0084.35503
[45] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., Wiley, New York, 1966, 1971. · Zbl 0138.10207
[46] Fieremans, E., Novikov, D. S., Jensen, J. H., and Helpern, J. A., Monte Carlo study of a two-compartment exchange model of diffusion, NMR Biomed., 23 (2010), pp. 711-724.
[47] Freidlin, M. and Weber, M., On random perturbations of Hamiltonian systems with many degrees of freedom, Stochastic Process. Appl., 94 (2001), pp. 199-239, doi:10.1016/S0304-4149(01)00083-7. · Zbl 1053.60058
[48] Freidlin, M. I. and Wentzell, A. D., Diffusion processes on graphs and the averaging principle, Ann. of Math., 21 (1993), pp. 2215-2245. · Zbl 0795.60042
[49] Freidlin, M. I. and Wentzell, A. D., Random Perturbations of Dynamical Systems, , 3rd ed., Springer, Berlin, 2012, doi:10.1007/978-3-642-25847-3. · Zbl 1267.60004
[50] Goldstein, J. A., Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985. · Zbl 0592.47034
[51] Goodson, R. E., Distributed system simulation using infinite product expansions, Simulation, 15 (1970), pp. 255-263.
[52] Gregosiewicz, A., Asymptotic behaviour of diffusions on graphs, in Probability in Action, Banek, T. and Kozlowski, E., eds., Lublin University of Technology, 2014, pp. 83-96.
[53] Gregosiewicz, A., Asymptotic behaviour of fast diffusions on graphs, Semigroup Forum, 101 (2020), pp. 619-653, doi:10.1007/s00233-020-10135-0. · Zbl 07286441
[54] Gregosiewicz, A., Sticky Diffusions on Graphs, https://arxiv.org/abs/2201.09363, 2022.
[55] Greiner, G., Perturbing the boundary conditions of a generator, Houston J. Math., 13 (1987), pp. 213-229. · Zbl 0639.47034
[56] Hartwell, L., Hopfield, J., and Leibler, S., From molecular to modular cell biology, Nature, 402 (1999), pp. C47-C52, doi:10.1038/35011540.
[57] Ikeda, N., Nagasawa, M., and Watanabe, S., Branching Markov processes II, J. Math. Kyoto Univ., 8 (1968), pp. 365-410, doi:10.1215/kjm/1250524059. · Zbl 0233.60069
[58] Itô, K. and McKean,, H. P. Jr., Brownian motions on a half line, Illinois J. Math., 7 (1963), pp. 181-231, http://projecteuclid.org/euclid.ijm/1255644633. · Zbl 0114.33601
[59] Itô, K. and McKean,, H. P. Jr., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1996. · Zbl 0837.60001
[60] Kallenberg, O., Foundations of Modern Probability, 2nd ed., Springer, Berlin, 2002. · Zbl 0996.60001
[61] Karatzas, I. and Shreve, S. E., Brownian Motion and Stochastic Calculus, Springer, New York, 1991. · Zbl 0734.60060
[62] Kopytko, B. I. and Portenko, M. I., The problem of pasting together two diffusion processes and classical potentials, Theory Stoch. Process., 15 (2009), pp. 126-139. · Zbl 1224.60203
[63] Kostrykin, V., Potthoff, J., and Schrader, R., Brownian motions on metric graphs, J. Math. Phys., 53 (2012), 095206, doi:10.1063/1.4714661. · Zbl 1293.60080
[64] Kostrykin, V., Potthoff, J., and Schrader, R., Brownian Motions on Metric Graphs: Feller Brownian Motions on Intervals Revisited, https://arxiv.org/abs/1008.3761, 2010. · Zbl 1293.60080
[65] Kurtz, T. G., Extensions of Trotter’s operator semigroup approximation theorems, J. Funct. Anal., 3 (1969), pp. 354-375. · Zbl 0174.18401
[66] Kurtz, T. G., A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Funct. Anal., 12 (1973), pp. 55-67. · Zbl 0246.47053
[67] Kurtz, T. G., Applications of an abstract perturbation theorem to ordinary differential equations, Houston J. Math., 3 (1977), pp. 67-82. · Zbl 0361.34048
[68] Langer, H. and Schenk, W., Knotting of one-dimensional Feller processes, Math. Nachr., 113 (1983), pp. 151-161, doi:10.1002/mana.19831130115. · Zbl 0532.60066
[69] Lasota, A. and Rudnicki, R., Asymptotic behaviour of semigroups of positive operators on \(C(X)\), Bull. Polish Acad. Sci. Math., 36 (1988), pp. 151-159, 1989. · Zbl 0676.47021
[70] Lejay, A., On the constructions of the skew Brownian motion, Probab. Surv., 3 (2006), pp. 413-466, doi:10.1214/154957807000000013. · Zbl 1189.60145
[71] Lejay, A., The snapping out Brownian motion, Ann. Appl. Probab., 26 (2016), pp. 1727-1742, doi:10.1214/15-AAP1131. · Zbl 1345.60088
[72] Lévy, P., Processus Stochastiques et Mouvement Brownien. Suivi d’une note de M. Loève, Gauthier-Villars, Paris, 1948. · Zbl 0034.22603
[73] Liggett, T. M., Continuous Time Markov Processes. An Introduction, AMS, Providence, RI, 2010. · Zbl 1205.60002
[74] Mandl, P., Analytical Treatment of One-Dimensional Markov Processes, Springer, New York, 1968. · Zbl 0179.47802
[75] Mansuy, R. and Yor, M., Aspects of Brownian Motion, Universitext, Springer-Verlag, Berlin, 2008, doi:10.1007/978-3-540-49966-4. · Zbl 1162.60022
[76] Meyer, P. A., Renaissance, recollements, mélanges, ralentissement de processus de Markov, Ann. Inst. Fourier (Grenoble), 25 (1975), pp. 465-497, http://www.numdam.org/item/AIF_1975__25_3-4_465_0. · Zbl 0304.60041
[77] Nagel, R., ed., One-parameter Semigroups of Positive Operators, , Springer, New York, 1986. · Zbl 0585.47030
[78] Neveu, J., Sur les états d’entrée et les états fictifs d’un processus de Markov, Ann. Inst. H. Poincaré, 17 (1962), pp. 323-337. · Zbl 0113.12601
[79] Norris, J. R., Markov Chains, Cambridge University Press, Cambridge, UK, 1997. · Zbl 0873.60043
[80] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. · Zbl 0516.47023
[81] Powles, J. G., Mallett, M. J. D., Rickayzen, G., and Evans, W. A. B., Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers, Proc. A, 436 (1992), pp. 391-403, doi:10.1098/rspa.1992.0025. · Zbl 0775.76184
[82] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, 3rd ed., Springer, New York, 1999. · Zbl 0917.60006
[83] Rogers, L. C. G., Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete, 63 (1983), pp. 237-255, doi:10.1007/BF00538964. · Zbl 0528.60073
[84] Rogers, L. C. G. and Williams, D., Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus, Cambridge University Press, Cambridge, UK, 2000. · Zbl 0977.60005
[85] Sauer, N., Empathy theory and the Laplace transform, in Linear Operators (Warsaw, 1994), , Institute of Mathematics of the Polish Academy of Sciences, Warsaw, 1997, pp. 325-338. · Zbl 0885.47013
[86] Sharpe, M., General Theory of Markov Processes, , Academic Press, Boston, MA, 1988. · Zbl 0649.60079
[87] Sova, M., Convergence d’opérations linéaires non bornées, Rev. Roumaine Math. Pures Appl., 12 (1967), pp. 373-389. · Zbl 0147.34201
[88] Stein, W. D., Transport and Diffusion Across Cell Membranes, Academic Press, New York, 1986.
[89] Tanner, J. E., Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient, J. Chem. Phys., 69 (1978), pp. 1748-1754, http://scitation.aip.org/content/aip/journal/jcp/69/4/10.1063/1.436751.
[90] Titchmarsh, E. C., The Theory of Functions, Oxford Scientific Publications, New York, 1939. · JFM 65.0302.01
[91] van Neerven, J., The Asymptotic Behaviour of Semigroups of Linear Operators, , Birkhäuser Verlag, Basel, 1996, doi:10.1007/978-3-0348-9206-3. · Zbl 0905.47001
[92] Videla, L. and Rebolledo, R., Evolving systems of stochastic differential equations, J. Theoret. Probab., 35 (2022), pp. 1662-1705, doi:10.1007/s10959-021-01098-1. · Zbl 1497.60102
[93] Werner, F., Concatenation and pasting of right processes, Electron. J. Probab., 26 (2021), 21, doi:10.1214/21-ejp611. · Zbl 1480.60224
[94] Yor, M., Some recent martingale problems, in Some Aspects of Brownian Motion. Part II, , Birkhäuser Verlag, Basel, 1997, doi:10.1007/978-3-0348-8954-4. · Zbl 0880.60082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.