×

Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. (English) Zbl 1248.35133

Janas, Jan (ed.) et al., Spectral theory and analysis. Conference on operator theory, analysis and mathematical physics (OTAMP) 2008, Bedlewo, Poland. Berlin: Springer (ISBN 978-3-7643-9993-1/hbk; 978-94-007-0431-2/ebook). Operator Theory: Advances and Applications 214, 83-106 (2011).
It is well known that the spectral values of second order self-adjoint partial differential operators \(H\) can be characterized in terms of the existence of appropriate generalized eigenfunctions (“Shnol theorem”). Another known result (“Allegretto-Piepenbrink theorem”) relates solutions and spectra of the operator \(H\). Recently A. Boutet De Monvel and the authors of the paper under review [Doc. Math., J. DMV 14, 167–189 (2009; Zbl 1172.35045); Isr. J. Math. 173, 189–211 (2009; Zbl 1188.47003)] proved the above-mentioned results for the generator of a strongly local Dirichlet form.
In the present paper, the authors present an introduction to the framework of strongly local Dirichlet forms and discuss the Shnol theorem, the Allegretto-Piepenbrink theorem, the Harnack principle, and some other spectral properties within this framework in a way that is accessible to the non-specialist. Applications to the singular interaction Hamiltonians and quantum graphs are included.
For the entire collection see [Zbl 1213.35010].

MSC:

35P05 General topics in linear spectral theory for PDEs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Agmon, S., Lower bounds for solutions of Schr¨odinger equations, J. Anal. Math., 23, 1-25 (1970) · Zbl 0211.40703
[2] Agmon, S., On Positive Solutions of Elliptic Equations with Periodic Coefficients inRN (1984), Amsterdam: Spectral Results and Extensions to Elliptic Operators on Riemannian Manifoldsin Differential Equations North Holland, Amsterdam
[3] Agmon, S.; H¨ormander, L., Asymptotic properties of solutions of differential equationswith simple characteristics, J. d’Analyse Math., 30, 1-38 (1976) · Zbl 0335.35013
[4] S. Agmon. Lectures on elliptic boundary value problems. Van Nostrand MathematicalStudies, No. 2. Van Nostrand, Princeton, 1965. · Zbl 0142.37401
[5] Agmon, S., Lectures on exponential decay of solutions of second-order elliptic equations:bounds on eigenfunctions of N-body Schr¨odinger operators (1982), Princeton, N.J.: Princeton UniversityPress, Princeton, N.J. · Zbl 0503.35001
[6] S. Agmon. Bounds on exponential decay of eigenfunctions of Schr¨odinger operators.In Schr¨odinger operators (Como, 1984), volume 1159 of Lecture Notes in Math.,pages 1-38. Springer, Berlin, 1985. · Zbl 0583.35027
[7] S. Agmon. On positivity and decay of solutions of second order elliptic equationson Riemannian manifolds. In Methods of functional analysis and theory of ellipticequations (Naples, 1982), pages 19-52. Liguori, Naples, 1983. · Zbl 0595.58044
[8] Aizenman, M.; Simon, B., Brownian motion and Harnack inequality for Schr¨odingeroperators, Commun. Pure Appl. Math., 35, 209-273 (1982) · Zbl 0459.60069 · doi:10.1002/cpa.3160350206
[9] Aizenman, M.; Sims, R.; Warzel, S., Absolutely continuous spectra of quantumtree graphs with weak disorder, Comm. Math. Phys., 264, 2, 371-389 (2006) · Zbl 1233.34009 · doi:10.1007/s00220-005-1468-5
[10] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden. Solvable models in quantummechanics. AMS Chelsea Publishing, Providence, RI, second edition, 2005. Withan appendix by P. Exner. · Zbl 1078.81003
[11] Albeverio, S.; Ma, ZM, Perturbation of Dirichlet forms – lower semiboundedness, closability, and form cores, J. Funct. Anal., 99, 2, 332-356 (1991) · Zbl 0743.60071 · doi:10.1016/0022-1236(91)90044-6
[12] Allegretto, W., On the equivalence of two types of oscillation for elliptic operators, Pac. J. Math., 55, 319-328 (1974) · Zbl 0279.35036
[13] Allegretto, W., Spectral estimates and oscillation of singular differential operators, Proc. Am. Math. Soc., 73, 51 (1979) · Zbl 0427.35029
[14] Allegretto, W., Positive solutions and spectral properties of second order ellipticoperators, Pac. J. Math., 92, 15-25 (1981) · Zbl 0421.35063
[15] Bender, C. M.; Boettcher, S.; Meisinger, P., PT symmetric quantum mechanics, J.Math.Phys., 40, 2201-2229 (1999) · Zbl 1057.81512
[16] Ju.M. Berezanskii. Expansions in eigenfunctions of selfadjoint operators. Translatedfrom the Russian by R. Bolstein, J.M. Danskin, J. Rovnyak and L. Shulman. Translationsof Mathematical Monographs, Vol. 17 American Mathematical Society, Providence,R.I. 1968 · Zbl 0157.16601
[17] Beurling, A.; Deny, J., Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A., 45, 208-215 (1959) · Zbl 0089.08201 · doi:10.1073/pnas.45.2.208
[18] Biroli, M., Schr¨odinger type and relaxed Dirichlet problems for the subelliptic p-Laplacian, Potential Analysis, 15, 1-16 (2001) · Zbl 1012.31003 · doi:10.1023/A:1011204609821
[19] M. Biroli and S. Marchi. Harnack inequality for the Schr¨odinger problem relative tostrongly local Riemannian p-homogeneous forms with a potential in the Kato class.Bound. Value Probl. 2007, Art. ID 24806, 19 pp. · Zbl 1154.35321
[20] Biroli, M.; Mosco, U., A Saint-Venant type principle for Dirichlet forms on discontinuousmedia, Ann. Mat. Pura Appl., IV. Ser., 169, 125-181 (1995) · Zbl 0851.31008
[21] Bouleau, N.; Hirsch, F., Dirichlet forms and analysis on Wiener space, volume 14of de Gruyter Studies in Mathematics (1991), Berlin: Walter de Gruyter & Co., Berlin · Zbl 0748.60046
[22] Boutet de Monvel, A.; Stollmann, P., Eigenfunction expansions for generators ofDirichlet forms, J. Reine Angew. Math., 561, 131-144 (2003) · Zbl 1094.31004 · doi:10.1515/crll.2003.063
[23] A. Boutet de Monvel, D. Lenz, and P. Stollmann. Schnol’s theorem for strongly localforms. Israel J. Math., to appear, 2008.
[24] Brasche, J. F.; Exner, P.; Kuperin, Y. A.; ˇSeba, P., Schr¨odinger operators withsingular interactions, J. Math. Anal. Appl., 184, 1, 112-139 (1994) · Zbl 0820.47005
[25] Brasche, J. F., On eigenvalues and eigensolutions of the Schr¨odinger equation on thecomplement of a set with classical capacity zero, Methods Funct. Anal. Topology, 9, 3, 189-206 (2003) · Zbl 1038.47035
[26] Chiarenza, F.; Fabes, E.; Garofalo, N., Harnack’s inequality for Schr¨odinger operatorsand the continuity of solutions, Proc. Amer. Math. Soc., 98, 3, 415-425 (1986) · Zbl 0626.35022
[27] Cycon, HL; Froese, RG; Kirsch, W.; Simon, B., Schr¨odinger Operators withApplication to Quantum Mechanics and Global Geometry (1987), Springer, Berlin: Text and Monographs inPhysics, Springer, Berlin · Zbl 0619.47005
[28] Davies, EB, Spectral theory and differential operators (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0893.47004
[29] Davies, EB; Simon, B., Ultracontractivity and the heat kernel for Schr¨odingeroperators and Dirichlet Laplacians, J. Funct. Anal., 59, 2, 335-395 (1984) · Zbl 0568.47034 · doi:10.1016/0022-1236(84)90076-4
[30] Dermenjian, Y.; Durand, M.; Iftimie, V., Spectral analysis of an acoustic multistratifiedperturbed cylinder, Comm. Partial Differential Equations, 23, 1-2, 141-169 (1998) · Zbl 0907.47046
[31] ter Elst, A. F.M.; Robinson, D. W., Invariant subspaces of submarkovian semigroups, J. Evol. Equ., 8, 4, 661-671 (2008) · Zbl 1186.47040
[32] Exner, P., An isoperimetric problem for leaky loops and related mean-chord inequalities, J. Math. Phys., 46, 6, 062105 (2005) · Zbl 1110.81076
[33] Exner, P.; Yoshitomi, K., Eigenvalue asymptotics for the Schr¨odinger operatorwith a δ-interaction on a punctured surface, Lett. Math. Phys., 65, 1, 19-26 (2003) · Zbl 1108.35131 · doi:10.1023/A:1027367605285
[34] R. Frank, D. Lenz, D. Wingert. Intrinsic metrics for non-local symmetric Dirichletforms and applications. in preparation. · Zbl 1304.60081
[35] M. Fukushima. Dirichlet forms and Markov processes. North-Holland MathematicalLibrary, Vol. 23. Amsterdam - Oxford - New York: North-Holland PublishingCompany. Tokyo: Kodansha Ltd. X, 196 p., 1980. · Zbl 0422.31007
[36] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markovprocesses. de Gruyter Studies in Mathematics. 19. Berlin: Walter de Gruyter. viii,392 p., 1994.
[37] Hansen, W., Harnack inequalities for Schr¨odinger operators, Ann. Scuola Norm. Sup.Pisa Cl. Sci., 4, 3, 413-470 (1999) · Zbl 0940.35063
[38] Herbst, IW; Sloan, AD, Perturbation of translation invariant positivity preservingsemigroups on L2(RN), Trans. Amer. Math. Soc., 236, 325-360 (1978) · Zbl 0388.47022
[39] Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Nadirashvili, N., Interior H¨olderestimates for solutions of Schr¨odinger equations and the regularity of nodal sets, Commun. Part. Diff. Eqns, 20, 1241-1273 (1995) · Zbl 0846.35036 · doi:10.1080/03605309508821131
[40] U. Kant, T. Klaus, J. Voigt and M. Weber. Dirichlet forms for singular onedimensionaloperators and on graphs. J. Evol. Equ., to appear. · Zbl 1239.31006
[41] M. Kassmann. Harnack inequalities: An Introduction. Bound. Value Probl. 2007,Art. ID 81415, 21 pp. 35-01 · Zbl 1144.35002
[42] Kirsch, W.; Simon, B., Comparison theorems for the gap of Schr¨odinger operators, J. Funct. Anal., 75, 396-410 (1987) · Zbl 0661.35062
[43] Kondej, S.; Veseli´c, I., Lower bounds on the lowest spectral gap of singular potentialHamiltonians, Ann. Henri Poincar´e, 8, 1, 109-134 (2006) · Zbl 1113.81054
[44] Lenz, D.; Schubert, C.; Stollmann, P., Eigenfunction expansion for Schr¨odinger operatorson metric graphs, Integral Equations and Operator Theory, 62, 541-553 (2008) · Zbl 1170.47009 · doi:10.1007/s00020-008-1636-z
[45] Lenz, D.; Stollmann, P.; Veseli´c, I., The Allegretto-Piepenbrinck Theorem forstrongly local Dirichlet forms, Documenta Mathematica, 14, 167-190 (2009) · Zbl 1172.35045
[46] D. Lenz, P. Stollmann and I. Veseli´c. Irreducibility and connectedness for Dirichletforms. In preparation, 2009
[47] Z.-M. Ma and M. R¨ockner. Introduction to the theory of (non-symmetric) Dirichletforms. Universitext. Berlin: Springer-Verlag, 1992. · Zbl 0826.31001
[48] Mezincescu, G. A., Lifschitz singularities for periodic operators plus random potentials, J. Statist. Phys., 49, 5-6, 1181-1190 (1987) · Zbl 0971.82508
[49] Moser, J., On Harnacks theorem for elliptic differential equations, Comm. Pure Appl. Math., 14, 577-591 (1961) · Zbl 0111.09302 · doi:10.1002/cpa.3160140329
[50] Moss, WF; Piepenbrink, J., Positive solutions of elliptic equations, Pacific J. Math., 75, 1, 219-226 (1978) · Zbl 0381.35026
[51] Piepenbrink, J., Nonoscillatory elliptic equations. J. Differential Equations, 15, 541-550 (1974) · Zbl 0289.35026
[52] Piepenbrink, J., A conjecture of Glazman, J. Differential Equations, 24, 2, 173-177 (1977) · Zbl 0353.35071
[53] Y. Pinchover. Topics in the theory of positive solutions of second-order elliptic andparabolic partial differential equations. In Spectral theory and mathematical physics:a Festschrift in honor of Barry Simon’s 60th birthday, volume 76 of Proc. Sympos.Pure Math., pages 329-355. Amer. Math. Soc., Providence, RI, 2007. · Zbl 1138.35008
[54] Pinsky, RG, Positive harmonic functions and diffusion, volume 45 of CambridgeStudies in Advanced Mathematics (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0858.31001
[55] Reed, M.; Simon, B., Methods of Modern Mathematical Physics II, Fourier Analysis (1975), Academic Press, San Diego: Self-Adjointness, Academic Press, San Diego · Zbl 0308.47002
[56] Reed, M.; Simon, B., Methods of Modern Mathematical Physics IV (1978), Academic Press, San Diego: Analysis ofOperators, Academic Press, San Diego · Zbl 0401.47001
[57] Saloff-Coste, L., Parabolic Harnack inequality for divergence-form second-order differentialoperators, Potential Anal., 4, 4, 429-467 (1995) · Zbl 0840.31006
[58] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101 · doi:10.1007/BF02391014
[59] ‘E.‘ E. Shnol. On the behaviour of eigenfunctions, Dokl. Akad. Nauk SSSR,n. Ser., 94, 389-392 (1954) · Zbl 0056.08401
[60] ‘E.‘E. Shnol. The behaviour of eigenfunctions and the spectrum of Sturm-Liouvilleoperators. (Russian) Usp. Mat. Nauk 9, No.4(62), 113-132 (1954) · Zbl 0056.34401
[61] ‘E.‘ E. Shnol. On the behavior of the eigenfunctions of Schr¨odinger’s equation. (Russian)Mat. Sb. (N.S.) 42 (84) (1957), 273-286; erratum 46 (88) (1958), 259. · Zbl 0078.27904
[62] Simon, B., Schr¨odinger semigroups, Bull. Amer. Math. Soc., 7, 3, 447-526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[63] Singer, I. M.; Wong, B.; Yau, S.-T.; Yau, S. S.-T., An estimate of the gap of thefirst two eigenvalues in the Schr¨odinger operator, Ann. Scuola Norm. Sup. Pisa Cl.Sci., 4, 2, 319-333 (1985) · Zbl 0603.35070
[64] Stollmann, P., Smooth perturbations of regular Dirichlet forms, Proc. Am. Math. Soc., 116, 3, 747-752 (1992) · Zbl 0768.31009 · doi:10.1090/S0002-9939-1992-1107277-3
[65] Stollmann, P.; Voigt, J., Perturbation of Dirichlet forms by measures, PotentialAnal., 5, 2, 109-138 (1996) · Zbl 0861.31004 · doi:10.1007/BF00396775
[66] P. Stollmann. Caught by disorder: A Course on Bound States in Random Media,volume 20 of Progress in Mathematical Physics. Birkh¨auser, 2001. · Zbl 0983.82016
[67] K.-T. Sturm. Analysis on local Dirichlet spaces. I: Recurrence, conservativeness andLp-Liouville properties. · Zbl 0806.53041
[68] Sturm, K-T, Measures charging no polar sets and additive functionals of Brownianmotion, Forum Math., 4, 3, 257-297 (1992) · Zbl 0745.60080 · doi:10.1515/form.1992.4.257
[69] Sturm, K-T, Harnack’s inequality for parabolic operators with singular low orderterms, Math. Z., 216, 4, 593-611 (1994) · Zbl 0808.35044 · doi:10.1007/BF02572341
[70] Sturm, K.-T., Analysis on local Dirichlet spaces. III: The parabolic Harnack inequality, J. Math. Pures Appl., 9, 273-297 (1996) · Zbl 0854.35016
[71] Sullivan, D., Related aspects of positivity in Riemannian geometry, J. DifferentialGeom., 25, 3, 327-351 (1987) · Zbl 0615.53029
[72] Vogt, H., A lower bound on the first spectral gap of Schr¨odinger operators with Katoclass measures, Ann. Henri Poincar´e, 10, 2, 395-414 (2009) · Zbl 1205.81089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.