×

Harnack and shift Harnack inequalities for degenerate (functional) stochastic partial differential equations with singular drifts. (English) Zbl 1483.60084

Summary: The existence and uniqueness of the mild solutions for a class of degenerate functional stochastic partial differential equations (SPDEs) are obtained, where the drift is assumed to be Hölder-Dini continuous. Moreover, the non-explosion of the solution is proved under some reasonable conditions. In addition, the Harnack inequality is derived by the method of coupling by change of measure. Finally, the shift Harnack inequality is obtained for the equations without delay, which is new even in the non-degenerate case. An example is presented in the final part of the paper.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60E15 Inequalities; stochastic orderings
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
34K26 Singular perturbations of functional-differential equations
39B72 Systems of functional equations and inequalities

References:

[1] Albeverio, S.; Klar, A., Long time behaviour of stochastic Hamiltonian systems: the multidimensional case, Potential Anal., 12, 281-297 (2000) · Zbl 0983.37062 · doi:10.1023/A:1008614526163
[2] Bahlali, K., Flows of homeomorphisms of stochastic differential equations with measurable drift, Stochastic Rep., 67, 53-82 (1999) · Zbl 0937.60059 · doi:10.1080/17442509908834203
[3] Bao, J.; Wang, F-Y; Yuan, C., Derivative formula and Harnack inequality for degenerate functional SDEs, Stoch. Dyn., 13, 943-951 (2013) · Zbl 1262.60052 · doi:10.1142/S021949371250013X
[4] Bao, J.; Wang, F-Y; Yuan, C., Hypercontractivity for functional stochastic partial differential equations, Electron. J. Probab., 20, 1-15 (2015) · Zbl 1328.60145 · doi:10.1214/EJP.v20-4108
[5] Da Prato, G.; Flandoli, F.; Priola, E.; Röckner, M., Strong uniqueness for stochastic evolution equations with unbounded measurable drift term, J. Theoret. Probab., 28, 1571-1600 (2015) · Zbl 1332.60091 · doi:10.1007/s10959-014-0545-0
[6] Dickey, LA, Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., 12, 1-310 (1991) · Zbl 0753.35075 · doi:10.1142/9789812797186_0001
[7] Dunyak, JP; Freidlin, MI, Optimal residence time control of Hamiltonian systems perturbed by white noise, SIAM J. Control Optim., 36, 233-252 (1998) · Zbl 1049.49500 · doi:10.1137/S0363012995291658
[8] Freidlin, M.; Weberb, M., On random perturbations of Hamiltonian systems with many degrees of freedom, Stoch. Proc. Appl., 94, 199-239 (2001) · Zbl 1053.60058 · doi:10.1016/S0304-4149(01)00083-7
[9] Guillin, A.; Wang, F-Y, Bismut formula and Harnack inequality for Fokker-Planck equations, J. Differ. Equ., 253, 20-40 (2012) · Zbl 1306.60121 · doi:10.1016/j.jde.2012.03.014
[10] Gyöngy, L.; Martinez, T., On stochastic differential equations with locally unbounded drift, Czechoslov. Math. J., 51, 763-783 (2001) · Zbl 1001.60060 · doi:10.1023/A:1013764929351
[11] Huang, X., Strong solutions for functional SDEs with singular drift, Stoch. Dyn., 18, 1850015 (2018) · Zbl 1378.60082 · doi:10.1142/S0219493718500156
[12] Huang, X.; Wang, F-Y, Functional SPDE with multiplicative noise and Dini drift, Ann. Fac. Sci. Toulouse Math., 6, 519-537 (2017) · Zbl 1371.60106 · doi:10.5802/afst.1544
[13] Mackay, RS; Meiss, JD; Percival, IC, Transport in Hamiltonian systems, Physica D, 11, 275 (1984) · Zbl 0585.58039
[14] Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. In: Applied Mathematical Sciences. Springer, New York (1989) · Zbl 0676.58017
[15] Ondrejét, M., Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes. Math. (Rozprawy Mat.), 426, 1-63 (2004) · Zbl 1053.60071 · doi:10.4064/dm426-0-1
[16] Pahlajani, CD, Stochastic averaging for a Hamiltonian system with skew random perturbations, J. Theor. Probab., 28, 1165-1226 (2015) · Zbl 1334.60104 · doi:10.1007/s10959-013-0533-9
[17] Prévôt, C.; Röckner, M., A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics (2007), Berlin: Springer, Berlin · Zbl 1123.60001
[18] Priola, E., Pathwise uniqueness for singular SDEs driven by stable processes, Osaka J. Math., 49, 421-447 (2012) · Zbl 1254.60063
[19] Talay, D., Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat. Fields, 8, 163-198 (2002) · Zbl 1011.60039
[20] Villani, C.: Hypercoercivity. Mem. Am. Math. Soc. 202, iv+141 (2009) · Zbl 1197.35004
[21] Wang, F-Y, Gradient estimates and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differ. Equ., 260, 2792-2829 (2016) · Zbl 1382.60087 · doi:10.1016/j.jde.2015.10.020
[22] Wang, F-Y, Harnack Inequality and Applications for Stochastic Partial Differential Equations (2013), New York: Springer, New York · Zbl 1332.60006
[23] Wang, F-Y, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal., 271, 5360-5383 (2017) · Zbl 1407.60092 · doi:10.1016/j.jfa.2017.03.015
[24] Wang, F-Y; Xu, LH, Log-Harnack inequality for Gruschin type semigroups, Rev. Mat. Iberoam., 30, 405-418 (2014) · Zbl 1334.60168 · doi:10.4171/RMI/786
[25] Wang, F-Y; Yuan, CG, Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Proc. Appl., 121, 2692-2710 (2011) · Zbl 1227.60080 · doi:10.1016/j.spa.2011.07.001
[26] Wang, F-Y; Zhang, XC, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl., 99, 726-740 (2013) · Zbl 1328.60141 · doi:10.1016/j.matpur.2012.10.007
[27] Wang, F-Y; Zhang, XC, Degenerate SDE with Hölder-Dini Drift and non-lipschitz noise coefficient, SIAM J. Math. Anal., 48, 2189-2226 (2016) · Zbl 1342.60093 · doi:10.1137/15M1023671
[28] Wang, F-Y; Zhang, XC, Degenerate SDEs in hilbert spaces with rough drifts, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18, 1550026 (2015) · Zbl 1334.60115 · doi:10.1142/S0219025715500265
[29] Wu, L., Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal., 172, 301-376 (2000) · Zbl 0957.60032 · doi:10.1006/jfan.1999.3544
[30] Yamada, T.; Watanabe, S., On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 155-167 (1971) · Zbl 0236.60037
[31] Zhang, XC, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stoch. Proc. Appl., 120, 1929-1949 (2010) · Zbl 1200.60049 · doi:10.1016/j.spa.2010.05.015
[32] Zhang, XC, Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients, Stoch. Proc. Appl., 115, 1805-1818 (2005) · Zbl 1078.60045 · doi:10.1016/j.spa.2005.06.003
[33] Zvonkin, AK, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93, 129-149 (1974) · Zbl 0306.60049 · doi:10.1070/SM1974v022n01ABEH001689
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.