×

Positive definite \(n\)-regular quadratic forms. (English) Zbl 1132.11018

For a positive integer \(n\), a positive definite integral quadratic form \(f\) is said to be \(n\)-regular if it represents every quadratic form of rank \(n\) that is represented by its genus, and to be (even) \(n\)-universal if it represents every (even) positive definite integral quadratic form of rank \(n\). So every \(n\)-universal form is \(n\)-regular. However, for small values of \(n\) there exist \(n\)-regular forms that are not \(n\)-universal. For example, the ternary form \(x_1^2+x_2^2+x_3^2\) is \(1\)-regular, but not \(1\)-universal. The main result of the present paper is that if \(f\) is an \(n\)-regular (even) form for any \(n\geq 27\), then \(f\) is (even) \(n\)-universal. As an application of this result, it is shown that the minimal rank of an \(n\)-regular form is bounded from below by a function that grows exponentially in \(n\). The author comments that every known example of an \(n\)-regular form with \(n\geq 10\) is either an \(n\)-universal form or an even \(n\)-universal form.

MSC:

11E12 Quadratic forms over global rings and fields
11E08 Quadratic forms over local rings and fields
11E25 Sums of squares and representations by other particular quadratic forms
Full Text: DOI

References:

[1] Andrianov, A.N.: Quadratic Forms and Hecke Operators. Springer, Berlin (1987) · Zbl 0613.10023
[2] Bannai, E.: Positive definite unimodular lattices with trivial automorphism groups. Mem. Am. Math. Soc. 85(429), 1–70 (1990) · Zbl 0702.11037
[3] Chan, W.K., Earnest, A.G.: Discriminant bounds for spinor regular ternary quadratic lattices. J. Lond. Math. Soc. (2) 69(3), 545–561 (2004) · Zbl 1084.11011 · doi:10.1112/S002461070400523X
[4] Chan, W.K., Oh, B.-K.: Finiteness theorems for positive definite n-regular quadratic forms. Trans. Am. Math. Soc. 355, 2385–2396 (2003) · Zbl 1026.11046 · doi:10.1090/S0002-9947-03-03262-8
[5] Conway, J.H., Sloane, N.J.A.: Low dimensional lattices I – Quadratic forms of small determinant. Proc. R. Soc. Lond., Ser. A 418, 17–41 (1988) · Zbl 0655.10020 · doi:10.1098/rspa.1988.0072
[6] Dickson, L.E.: Ternary quadratic forms and congruences. Ann. Math. 28, 331–341 (1927) · JFM 53.0133.03
[7] Earnest, A.G.: The representation of binary quadratic forms by positive definite quaternary quadratic forms. Trans. Am. Math. Soc. 345, 853–863 (1994) · Zbl 0810.11019 · doi:10.2307/2155002
[8] Earnest, A.G.: An application of character sum inequalities to quadratic forms. In: Number Theory. CMS Conf. Proc., vol. 15, pp. 155–158. Am. Math. Soc., Providence, RI (1995) · Zbl 0833.11012
[9] Ellenberg, J., Venkatesh, A.: Local-global principle for representations of quadratic forms. Preprint · Zbl 1247.11048
[10] Hsia, J., Kitaoka, Y., Kneser, M.: Representations of positive definite quadratic forms. J. Reine Angew. Math. 301, 132–141 (1978) · Zbl 0374.10013 · doi:10.1515/crll.1978.301.132
[11] Hudson, R.H.: On the least k-th power non-residue. Ark. Mat. 12, 217–220 (1974) · Zbl 0307.10001 · doi:10.1007/BF02384758
[12] Hudson, R.H., Williams, K.S.: On the least quadratic nonresidue of a prime p (mod 4). J. Reine Angew. Math. 318, 106–109 (1980) · Zbl 0425.10004 · doi:10.1515/crll.1980.318.106
[13] Jagy, W.C., Kaplansky, I., Schiemann, A.: There are 913 regular ternary forms. Mathematika 44, 332–341 (1997) · Zbl 0923.11060 · doi:10.1112/S002557930001264X
[14] Kitaoka, Y.: Arithmetic of Quadratic Forms. Cambridge University Press, Cambridge (1993) · Zbl 0785.11021
[15] Kim, M.-H.: Recent developments on universal forms. In: Algebraic and Arithmetic Theory of Quadratic Forms. Contemp. Math., vol. 344, pp. 215–228. Am. Math. Soc., Providence, RI (2004) · Zbl 1143.11309
[16] Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, New York (1973) · Zbl 0292.10016
[17] Nipp, G.L.: Quaternary Quadratic Forms. Springer, New York (1991) · Zbl 0727.11018
[18] O’Meara, O.T.: Introduction to Quadratic Forms. Springer, New York (1963)
[19] Schulze-Pillot, R.: Representation by integral quadratic forms – a survey. In: Algebraic and Arithmetic Theory of Quadratic Forms. Contemp. Math., vol. 344, pp. 303–321. Am. Math. Soc., Providence, RI (2004) · Zbl 1143.11310
[20] Watson, G.L.: Some problems in the theory of numbers. Ph.D. Thesis, University of London (1953) · Zbl 0053.13202
[21] Watson, G.L.: The representation of integers by positive ternary quadartic forms. Mathematika 1, 104–110 (1954) · Zbl 0056.27201 · doi:10.1112/S0025579300000589
[22] Watson, G.L.: Transformations of a quadratic form which do not increase the class-number. Proc. Lond. Math. Soc. 12(3), 577–587 (1962) · Zbl 0107.26901 · doi:10.1112/plms/s3-12.1.577
[23] Watson, G.L.: The class-number of a positive quadratic form. Proc. Lond. Math. Soc. 13, 549–576 (1963) · Zbl 0122.05802 · doi:10.1112/plms/s3-13.1.549
[24] Tartakowsky, W.: Die Gesamtheit der Zahlen, die durch eine positive quadratische Form \(F(x_1,\cdots,x_s)\) (s) darstellbar sind. Isv. Akad. Nauk SSSR 7, 111–122; 165–195 (1929) · JFM 56.0882.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.