×

Locating eigenvalues of symmetric matrices – a survey. (English) Zbl 1540.15002

This paper is a survey about the emerging topic of eigenvalue location in symmetric matrices, that is: given a real symmetric matrix \(A\) and a real interval \(I\), determine the number of eigenvalues of \(A\) lying in \(I\). One way to solve this problem for a given symmetric matrix \(A\) is to compute its eigendecomposition \[ A = Q^{-1}DQ, \] where \(D\) is the diagonal matrix whose entries are the eigenvalues of \(A\). However, for many classes of symmetric matrices one can exploit the underlying graph structure of the matrix \(A\) (obtained from the off-diagonal nonzero entries of \(A\)) and use this graph structure to devise efficient linear time algorithms for the problem of eigenvalue location. The general procedure is as follows: recall that the inertia of a matrix \(A\) is the triple \((n_{+}(A), n_{-}(A), n_{0}(A))\). Sylvester’s law of inertia states that two real symmetric matrices \(A\) and \(B\) have the same inertia if and only if they are congruent, i.e., if there is an invertible matrix \(P\) such that \(A= P^{T}BP\). If, for a real symmetric matrix \(A\) and a real number \(x\), one could efficiently find a diagonal matrix \(D\) that is congruent to \(A+x \mathrm{I}\) (here \(\mathrm{I}\) is the identity matrix), then the inertia of \(A+x\mathrm{I}\) could be readily obtained from the inertia of \(D\), and the eigenvalue location problem can be easily solved.
The first part of the survey (Sections 2 and 3) considers the case of sparse matrices. In Section 2, a linear time algorithm is given which finds a diagonal matrix \(D\) congruent to a real symmetric matrix \(A\) when the underlying graph of \(A\) is a tree (the nonzero entries of \(A\) can be arbitrary). In Section 3, this is extended to matrices whose underlying graph has a tree decomposition of width \(k\).
The second part of the survey (Sections 4 and 5) considers the case of dense graphs. Here, the results are no longer applicable for arbitrary symmetric matrices with the appropriate underlying graph, but are restricted to matrices where each off-diagonal entry is in the set \(\{0, \beta\}\) for some \(\beta \in \mathbb{R}\) (note that this class of matrices includes many matrices well-studied in spectral graph theory, {e.g.}, the adjacency, Laplacian and signless Laplacian matrices of a graph). In Section 4, an efficient algorithm is given for the eigenvalue location of {cographs} (a definition of the family of cographs is that it is the family of graphs which does not contain the path \(P_4\) as an induced subgraph). The important property of cographs exploited here is that there are two vertices \(u\) and \(v\) whose corresponding rows and columns in the adjacency matrix of the graph can differ in at most two positions. In Section 5, algorithms for arbitrary dense graphs are given using a slick clique decomposition of the underlying graph.
The third part of the survey (Sections 6 and 8) focuses on applications of eigenvalue location to problems in spectral graph theory. An application is to limit points of spectral radii of graphs. Among other applications described in the paper are inertial and spectral characterization of cographs and some progress on Brouwer’s conjecture about Laplacian eigenvalues. Eigenvalue location may find further applications in spectral graph theory.

MSC:

15-02 Research exposition (monographs, survey articles) pertaining to linear algebra
15A18 Eigenvalues, singular values, and eigenvectors
47A11 Local spectral properties of linear operators
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C42 Density (toughness, etc.)
05C85 Graph algorithms (graph-theoretic aspects)

Software:

ComputeTW
Full Text: DOI

References:

[1] L.E. Allem and F. Tura. Integral cographs. Discret. Appl. Math., 283:153-167, 2020. · Zbl 1442.05123
[2] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebr. Discret. Meth., 8(2):277-284, 1987. · Zbl 0611.05022
[3] F. Belardo, M. Brunetti, and V. Trevisan. Locating eigenvalues of unbalanced unicyclic signed graphs. Appl. Math. Computat., 400:126082, 2021. · Zbl 1508.05102
[4] F. Belardo, M. Brunetti, V. Trevisan, and J. Wang. On quipus whose signless laplacian index does not exceed 4.5. J. Algebr. Comb., 55(4):1199-1223, 2022. · Zbl 1489.05090
[5] F. Belardo, E.R. Oliveira, and V. Trevisan. Spectral ordering of trees with small index. Linear Algebra Appl., 575:250-272, 2019. · Zbl 1441.05133
[6] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Elsevier, 1972. · Zbl 0244.49007
[7] T. Bıyıkoglu, S.K. Simić, and Z. Stanić. Some notes on spectra of cographs. Ars Combin., 100:421-434, 2011. · Zbl 1265.05349
[8] H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1-21, 1993. · Zbl 0804.68101
[9] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996. · Zbl 0864.68074
[10] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1):1-45, 1998. · Zbl 0912.68148
[11] H.L. Bodlaender. Treewidth of Graphs. Springer New York, New York, NY, 2255-2257, 2016.
[12] H.L. Bodlaender and A.M.C.A. Koster. Combinatorial optimization on graphs of bounded treewidth. Comput. J., 51(3):255-269, 2008.
[13] H.L. Bodlaender and A.M.C.A. Koster. Treewidth computations i. upper bounds. Inform. Computat., 208(3):259-275, 2010. · Zbl 1186.68328
[14] H.L. Bodlaender and A.M.C.A. Koster. Treewidth computations ii. lower bounds. Inform. Computat., 209(7):1103-1119, 2011. · Zbl 1220.68071
[15] R.O. Braga, R.R. Del-Vecchio, V.M. Rodrigues, and V. Trevisan. Trees with 4 or 5 distinct normalized laplacian eigen-values. Linear Algebra Appl., 471:615-635, 2015. · Zbl 1307.05137
[16] R.O. Braga and V.M. Rodrigues. Locating eigenvalues of perturbed Laplacian matrices of trees. TEMA (São Carlos) Brazilian Soc. Appl. Math. Comp., 18(3):479-491, 2017.
[17] R.O. Braga, V.M. Rodrigues, and V. Trevisan. On the distribution of Laplacian eigenvalues of trees. Discrete Math., 313(21):2382-2389, 2013. · Zbl 1279.05045
[18] R.O. Braga, V.M. Rodrigues, and V. Trevisan. Locating eigenvalues of unicyclic graphs. Appl. Anal. Discrete Math., 11:273-298, 2017. · Zbl 1499.05352
[19] S.M. Cioabȃ, E.R. van Dam, J.H. Koolen, and J.-H. Lee. Asymptotic results on the spectral radius and the diameter of graphs. Linear Algebra Appl., 432(2):722-737, 2010. · Zbl 1209.05140
[20] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Computat., 9(3):251-280, 1990. Computational algebraic complexity editorial. · Zbl 0702.65046
[21] D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, and U. Rotics. Polynomial-time recognition of clique-width ≤ 3 graphs. Discret. Appl. Math., 160(6):834-865, 2012. Fourth Workshop on Graph Classes, Optimization, and Width Parameters Bergen, Norway, October 2009. · Zbl 1237.05147
[22] D.G. Corneil, H. Lerchs, and L.S. Burlingham. Complement reducible graphs. Discrete Appl. Math., 3(3):163-174, 1981. · Zbl 0463.05057
[23] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985. · Zbl 0575.68065
[24] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Appl. Math., 101(1-3):77-114, 2000. · Zbl 0958.05105
[25] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Clique-width minimization is NP-hard (extended abstract). In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 354-362. ACM, New York, 2006. · Zbl 1301.68145
[26] E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan. On the sum of the Laplacian eigenvalues of a tree. Linear Algebra Appl., 435:371-399, 2011. · Zbl 1226.05154
[27] E. Fritscher, C. Hoppen, I. Rocha, and V. Trevisan. Characterizing trees with large laplacian energy. Linear Algebra Appl., 442:20-49, 2014. Special Issue on Spectral Graph Theory on the occasion of the Latin Ibero-American Spectral Graph Theory Workshop (Rio de Janeiro, 27-28 September 2012). · Zbl 1282.05029
[28] M. Fürer, C. Hoppen, D.P. Jacobs, and V. Trevisan. Locating the eigenvalues for graphs of small clique-width. In M.A. Bender, M. Farach-Colton, and M.A. Mosteiro (editors), LATIN 2018: Theoretical Informatics. Springer International Publishing, Cham, 2018, 475-489. · Zbl 1485.05100
[29] M. Fürer, C. Hoppen, D.P. Jacobs, and V. Trevisan. Eigenvalue location in graphs of small clique-width. Linear Algebra Appl., 560:56-85, 2019. · Zbl 1402.05136
[30] M. Fürer, C. Hoppen, and V. Trevisan. Efficient diagonalization of symmetric matrices associated with graphs of small treewidth, 2021.
[31] E. Ghorbani. Spectral properties of cographs and p5-free graphs. Linear Multilinear Algebra, 67(8):1701-1710, 2019. · Zbl 1415.05105
[32] R. Halin. S-functions for graphs. J. Geom., 8(1):171-186, 1976. · Zbl 0339.05108
[33] A.J. Hoffman and J.H. Smith. On the spectral radii of topologiacally equivalent graphs. In M. Fiedler (editor), Recent Advanced in Graph Theory. Academia, Prague, 273-281, 1975. · Zbl 0327.05125
[34] C. Hoppen, D.P. Jacobs, and V. Trevisan. Locating Eigenvalues in Graphs: Algorithms and Applications. Springer Nature, 2022. · Zbl 1511.05001
[35] D.P. Jacobs, C.M.S. Machado, and V. Trevisan. An o(n 2 ) algorithm for the characteristic polynomial of a tree. J. Comb. Math. Comb. Comput., 54:213-221, 2005. · Zbl 1080.05089
[36] D.P. Jacobs, E. Oliveira, and V. Trevisan. Most Laplacian eigenvalues of a tree are small. J. Comb. Theory, B, 146:1-33, 2021. · Zbl 1460.05114
[37] D.P. Jacobs and V. Trevisan. Locating the eigenvalues of trees. Linear Algebra Appl., 434(1):81-88, 2011. · Zbl 1231.05167
[38] D.P. Jacobs, V. Trevisan, and F. Tura. Eigenvalue location in threshold graphs. Linear Algebra Appl., 439(10):2762-2773, 2013. · Zbl 1282.05121
[39] D.P. Jacobs, V. Trevisan, and F. Tura. Computing the characteristic polynomial of threshold graphs. J. Graph Algor. Appl., 18(5):709-719, 2014. · Zbl 1305.05105
[40] D.P. Jacobs, V. Trevisan, and F. Tura. Eigenvalues and energy in threshold graphs. Linear Algebra Appl., 465:412-425, 2015. · Zbl 1302.05103
[41] D.P. Jacobs, V. Trevisan, and F. Tura. Eigenvalue location in cographs. Discrete Applied Mathematics, 245:220-235, 2018. · Zbl 1387.05152
[42] T. Kloks. Treewidth: Computations and Approximations, vol. 842. Lecture Notes in Computer Science. Springer Verlag, 1994. · Zbl 0825.68144
[43] M. Lepović and I. Gutman. Some spectral properties of starlike trees. In Bull. Acad. Serbe Sci. Arts, vol. 26. Cl. Sci. Math. Nat.,Sci. Math. Académie Serbe des Sciences et des Arts, 107-113, 2001. · Zbl 0997.05059
[44] A. Mohammadian and V. Trevisan. Some spectral properties of cographs. Discret. Math., 339(4):1261-1264, 2016. · Zbl 1329.05196
[45] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. · Zbl 1095.68038
[46] E.R. Oliveira, D. Stevanović, and V. Trevisan. Spectral radius ordering of starlike trees. Linear Multilinear Algebra, 68(5):991-1000, 2020. · Zbl 1455.05047
[47] E.R. Oliveira and V. Trevisan. Applications of rational difference equations to spectral graph theory. J. Diff. Equ. Appl., 27(7):1024-1051, 2021. · Zbl 1477.05109
[48] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Comb. Theory B, 96(4):514-528, 2006. · Zbl 1114.05022
[49] L. Patuzzi, M.A.A. de Freitas, and R.R. Del-Vecchio. Indices for special classes of trees. Linear Algebra Appl., 442:106-114, 2014. Special Issue on Spectral Graph Theory on the occasion of the Latin Ibero-American Spectral Graph Theory Workshop (Rio de Janeiro, 27-28 September 2012). · Zbl 1282.05148
[50] N. Robertson and P.D. Seymour. Graph minors I. excluding a forest. J. Comb. Theory B, 35:39-61, 1983. · Zbl 0521.05062
[51] N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree-width. J. Algor., 7(3):309-322, 1986. · Zbl 0611.05017
[52] J. Salez. Every totally real algebraic integer is a tree eigenvalue. J. Comb. Theory B, 111:249-256, 2015. · Zbl 1307.05150
[53] I. Sciriha and S. Farrugia. On the spectrum of threshold graphs. ISRN Disc. Math., 2011:1-29, 2011. · Zbl 1238.05156
[54] J.B. Shearer. On the distribution of the maximum eigenvalue of graphs. Linear Algebra Appl., 114-115:17-20, 1989. Special Issue Dedicated to Alan J. Hoffman. · Zbl 0672.05059
[55] C. Sin. On the number of laplacian eigenvalues of trees less than the average degree. Discret. Math., 343(10):111986, 2020. · Zbl 1445.05063
[56] V. Strassen. Relative bilinear complexity and matrix multiplication. J. für die reine und angewandte Mathematik 1987(375-376):406-443, 1987. · Zbl 0621.68026
[57] V. Trevisan, J.B. Carvalho, R.R. Del Vecchio, and C.T.M. Vinagre. Laplacian energy of diameter 3 trees. Appl. Math. Lett., 24(6):918-923, 2011. · Zbl 1216.05010
[58] S. Wang, Y. Huang, and B. Liu. On a conjecture for the sum of laplacian eigenvalues. Math. Comput. Model., 56(3):60-68, 2012. · Zbl 1255.05118
[59] E. Wanke. k-NLC graphs and polynomial algorithms. Discret. Appl. Math., 54(2):251-266, 1994. · Zbl 0812.68106
[60] R. Woo and A. Neumaier. On graphs whose spectral radius is bounded by 3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.