×

Approximation of the fractional Schrödinger propagator on compact manifolds. (English) Zbl 1483.35317

Summary: Let \(\mathcal{L}\) be a second order positive, elliptic differential operator that is self-adjoint with respect to some \(C^\infty\) density \(dx\) on a compact connected manifold \(\mathbb{M}\). We proved that if \(0<\alpha<1\), \(\alpha/2<s<\alpha\) and \(f\in H^s(\mathbb{M})\) then the fractional Schrödinger propagator \(\mathrm{e}^{\mathrm{i}t\mathcal{L}^{\alpha/2}}\) on \(\mathbb{M}\) satisfies \(\mathrm{e}^{\mathrm{i}t\mathcal{L}^{\alpha/2}}f(x)-f(x)=o(t^{s/\alpha-\varepsilon})\) almost everywhere as \(t\rightarrow 0^+\), for any \(\varepsilon>0\).

MSC:

35R11 Fractional partial differential equations
35R01 PDEs on manifolds
42B15 Multipliers for harmonic analysis in several variables
47D06 One-parameter semigroups and linear evolution equations
58J05 Elliptic equations on manifolds, general theory
Full Text: DOI

References:

[1] Bourgain, J., On the Schrödinger maximal function in higher dimension, Proc. Steklov Inst. Math., 280, 46-60 (2013) · Zbl 1291.35253 · doi:10.1134/S0081543813010045
[2] Bourgain, J., A note on the Schrödinger maximal function, J. Anal. Math., 130, 393-396 (2016) · Zbl 1361.35151 · doi:10.1007/s11854-016-0042-8
[3] Carleson, L., Some analytic problems related to statistical mechanics, Euclidean Harmonic Analysis, 5-45 (1980), Berlin: Springer, Berlin · Zbl 0425.60091 · doi:10.1007/BFb0087666
[4] Chen, J. C.; Fan, D. S.; Zhao, F. Y., On the rate of almost everywhere convergence of combinations and multivariate averages, Potential Anal., 51, 397-423 (2019) · Zbl 1428.41039 · doi:10.1007/s11118-018-9716-4
[5] Dahlberg, B. E J.; Kenig, C. E., A note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic Analysis (Minneapolis, Minn., 1981), 205-209 (1982), Berlin-New York: Springer, Berlin-New York · Zbl 0519.35022 · doi:10.1007/BFb0093289
[6] Demeter, C., Guo, S. M.: Schrödinger maximal function estimates via the pseudoconformal transformation. arXiv:1608.07640
[7] Du, X. M.; Guth, L.; Li, X. C., A sharp Schrödinger maximal estimate in ℝ^2, Ann. of Math. (2), 186, 607-640 (2017) · Zbl 1378.42011 · doi:10.4007/annals.2017.186.2.5
[8] Kaplan, A.; Ricci, F., Harmonic analysis on groups of Heisenberg type, Harmonic Analysis (Cortona, 1982), 416-435 (1983), Berlin: Springer, Berlin · Zbl 0521.43008 · doi:10.1007/BFb0069172
[9] Liu, H. P.; Wang, Y. Z., A restriction theorem for the H-type groups, Proc. Amer. Math. Soc., 139, 2713-2720 (2011) · Zbl 1227.43008 · doi:10.1090/S0002-9939-2011-10907-9
[10] Liu, H. P.; Zeng, H. B., Local estimate about Schrödinger maximal operator on H-type groups, Acta Math. Sci. Ser. B (Engl. Ed.), 37, 527-538 (2017) · Zbl 1389.43013
[11] Lee, S., On pointwise convergence of the solutions to Schrödinger equations in ℝ^2, Int. Math. Res. Not. IMRN, 2006, 1-21 (2006) · Zbl 1131.35306
[12] Lucà, R.; Rogers, K., Coherence on fractals versus pointwise convergence for the Schrödinger equation, Comm. Math. Phys., 351, 341-359 (2017) · Zbl 1375.35422 · doi:10.1007/s00220-016-2722-8
[13] Meaney, C., Remarks on the Rademacher-Menshov Theorem, CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, 100-110 (2007), Canberra: Austral. Nat. Univ., Canberra · Zbl 1213.42122
[14] Moyua, A.; Vargas, A.; Vega, L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not. IMRN, 1996, 793-815 (1996) · Zbl 0868.35024 · doi:10.1155/S1073792896000499
[15] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 55, 699-715 (1987) · Zbl 0631.42010 · doi:10.1215/S0012-7094-87-05535-9
[16] Sjölin, P., L^p maximal estimates for solutions to the Schrödinger equation, Math. Scand., 81, 35-68 (1997) · Zbl 0886.42017 · doi:10.7146/math.scand.a-12865
[17] Sogge, C. D., On the convergence of Riesz means on compact manifolds, Ann. of Math. (2), 126, 439-447 (1987) · Zbl 0653.35068 · doi:10.2307/1971356
[18] Tao, T.; Vargas, A., A bilinear approach to cone multipliers II. Applications, Geom. Funct. Anal., 10, 216-258 (2000) · Zbl 0949.42013 · doi:10.1007/s000390050007
[19] Vega, L., Schroödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102, 874-878 (1988) · Zbl 0654.42014
[20] Walther, B. G., Some L^p(L^∞)- and L^2(L^2)-estimates for oscillatory Fourier transforms, Analysis of Divergence (Orono, ME, 1997), 213-231 (1999), Boston: Birkhäuser Boston, Boston · Zbl 0913.42011 · doi:10.1007/978-1-4612-2236-1_15
[21] Zhang, C. J., Pointwise convergence of solutions to Schrödinger type equations, Nonlinear Anal., 109, 180-186 (2014) · Zbl 1300.35120 · doi:10.1016/j.na.2014.06.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.