×

Efficient numerical simulations based on an explicit group approach for the time fractional advection-diffusion reaction equation. (English) Zbl 1524.35714

Summary: The time-fractional advection-diffusion reaction equation (TFADRE) is a fundamental mathematical model because of its key role in describing various processes such as oil reservoir simulations, COVID-19 transmission, mass and energy transport, and global weather production. One of the prominent issues with time fractional differential equations is the design of efficient and stable computational schemes for fast and accurate numerical simulations. We construct in this paper, a simple and yet efficient modified fractional explicit group method (MFEGM) for solving the two-dimensional TFADRE with suitable initial and boundary conditions. The proposed method is established using a difference scheme based on L1 discretization in temporal direction and central difference approximations with double spacing in spatial direction. For comparison purposes, the Crank-Nicolson finite difference method (CNFDM) is proposed. The stability and convergence of the presented methods are theoretically proved and numerically affirmed. We illustrate the computational efficiency of the MFEGM by comparing it to the CNFDM for four numerical examples including fractional diffusion and fractional advection-diffusion models. The numerical results show that the MFEGM is capable of reducing iteration count and CPU timing effectively compared to the CNFDM, making it well-suited to time fractional diffusion equations.

MSC:

35R11 Fractional partial differential equations
65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Abdi, N.; Aminikhah, H.; Refahi Sheikhani, A., On rotated grid point iterative method for solving 2D fractional reaction-subdiffusion equation with caputo-fabrizio operator, J Differ Equ Appl, 27, 8, 1134-1160 (2021) · Zbl 1481.65116 · doi:10.1080/10236198.2021.1965592
[2] Abdi N, Aminikhah H, Sheikhani A, Alavi J, Taghipour M (2021) An efficient explicit decoupled group method for solving two-dimensional fractional burgers’ equation and its convergence analysis. Adv Math Phys 2021 · Zbl 1481.65117
[3] Ali, A.; Abdeljawad, T.; Iqbal, A.; Akram, T.; Abbas, M., On unconditionally stable new modified fractional group iterative scheme for the solution of 2d time-fractional telegraph model, Symmetry, 13, 11, 2078 (2021) · doi:10.3390/sym13112078
[4] Ali U, Naeem M, Abdullah FA, Wang M-K, Salama FM (2022) Analysis and implementation of numerical scheme for the variable-order fractional modified sub-diffusion equation. Fractals 2240253 · Zbl 1509.65068
[5] Ara, A.; Khan, NA; Razzaq, OA; Hameed, T., Raja MAZ (2018) Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling, Adv Differ Equ, 1, 1-13 (2018) · Zbl 1445.91062
[6] Araya, R.; Aguayo, J.; Muñoz, S., An adaptive stabilized method for advection-diffusion-reaction equation, J Comput Appl Math, 376 (2020) · Zbl 1436.65170 · doi:10.1016/j.cam.2020.112858
[7] Balasim, AT; Ali, NHM, New group iterative schemes in the numerical solution of the two-dimensional time fractional advection-diffusion equation, Cogent Math, 4, 1, 1412241 (2017) · Zbl 1427.65143 · doi:10.1080/23311835.2017.1412241
[8] Chakraverty, S.; Jena, RM; Jena, SK, Computational fractional dynamical systems: fractional differential equations and applications (2022), Hoboken: Wiley, Hoboken · Zbl 07553234 · doi:10.1002/9781119697060
[9] Chávez-Vázquez, S.; Gómez-Aguilar, JF; Lavín-Delgado, J.; Escobar-Jiménez, RF; Olivares-Peregrino, VH, Applications of fractional operators in robotics: a review, J Intell Robot Syst, 104, 4, 1-40 (2022) · doi:10.1007/s10846-022-01597-1
[10] Chen, C.; Liu, H.; Zheng, X.; Wang, H., A two-grid mmoc finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput Math Appl, 79, 9, 2771-2783 (2020) · Zbl 1437.65180 · doi:10.1016/j.camwa.2019.12.008
[11] Chowdhury, M.; Kumar, BR, On subgrid multiscale stabilized finite element method for advection-diffusion-reaction equation with variable coefficients, Appl Numer Math, 150, 576-586 (2020) · Zbl 1448.35387 · doi:10.1016/j.apnum.2019.10.021
[12] Cui, M., Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients, J Comput Phys, 280, 143-163 (2015) · Zbl 1349.65281 · doi:10.1016/j.jcp.2014.09.012
[13] Diethelm K, Kiryakova V, Luchko Y, Machado J, Tarasov VE (2022) Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn 1-26
[14] Goswami, A.; Singh, J.; Kumar, D.; Gupta, S., An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J Ocean Eng Sci, 4, 2, 85-99 (2019) · doi:10.1016/j.joes.2019.01.003
[15] Hafez RM, Hammad M, Doha EH (2020) Fractional jacobi galerkin spectral schemes for multi-dimensional time fractional advection-diffusion-reaction equations. Eng Comput 1-18
[16] Hamid, M.; Usman, M.; Yan, Y.; Tian, Z., An efficient numerical scheme for fractional characterization of mhd fluid model, Chaos Solitons Fractals, 162 (2022) · Zbl 1506.76119 · doi:10.1016/j.chaos.2022.112475
[17] Hang, T.; Zhou, Z.; Pan, H.; Wang, Y., The conservative characteristic difference method and analysis for solving two-sided space-fractional advection-diffusion equations, Numer Algor, 92, 3, 1723-1755 (2023) · Zbl 07676500 · doi:10.1007/s11075-022-01363-2
[18] Haq, S.; Hussain, M.; Ghafoor, A., A computational study of variable coefficients fractional advection-diffusion-reaction equations via implicit meshless spectral algorithm, Eng Comput, 36, 4, 1243-1263 (2020) · doi:10.1007/s00366-019-00760-x
[19] Jannelli, A., A novel adaptive procedure for solving fractional differential equations, J Comput Sci, 47 (2020) · doi:10.1016/j.jocs.2020.101220
[20] Jannelli, A., Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations, Commun Nonlinear Sci Numer Simul, 105 (2022) · Zbl 07443082 · doi:10.1016/j.cnsns.2021.106073
[21] Khalighi, M.; Amirianmatlob, M.; Malek, A., A new approach to solving multiorder time-fractional advection-diffusion-reaction equations using bem and chebyshev matrix, Math Methods Appl Sci, 44, 4, 2964-2984 (2021) · Zbl 1473.65332 · doi:10.1002/mma.6352
[22] Khan, MA; Ali, NH; Hamid, NNA, (2020) A new fourth-order explicit group method in the solution of two-dimensional fractional rayleigh-stokes problem for a heated generalized second-grade fluid, Adv Differ Equ, 1, 1-22 (2020) · Zbl 1486.65109
[23] Khan, MA; Ali, NHM; Abd Hamid, NN, The design of new high-order group iterative method in the solution of two-dimensional fractional cable equation, Alex Eng J, 60, 4, 3553-3563 (2021) · doi:10.1016/j.aej.2021.01.008
[24] Khan, MA; Alias, N.; Khan, I.; Salama, FM; Eldin, SM, A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional cable equation, Sci Rep, 13, 1, 1549 (2023) · doi:10.1038/s41598-023-28741-7
[25] Kumar, S.; Zeidan, D., An efficient mittag-leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl Numer Math, 170, 190-207 (2021) · Zbl 1529.65101 · doi:10.1016/j.apnum.2021.07.025
[26] Li, C.; Wang, Z., Numerical methods for the time fractional convection-diffusion-reaction equation, Numer Funct Anal Optim, 42, 10, 1115-1153 (2021) · Zbl 1532.65082 · doi:10.1080/01630563.2021.1936019
[27] Lin, J.; Xu, Y.; Zhang, Y., Simulation of linear and nonlinear advection-diffusion-reaction problems by a novel localized scheme, Appl Math Lett, 99 (2020) · Zbl 1437.65211 · doi:10.1016/j.aml.2019.106005
[28] Naeem, M.; Aljahdaly, NH; Shah, R.; Weera, W., The study of fractional-order convection-reaction-diffusion equation via an elzake atangana-baleanu operator, AIMS Math, 7, 10, 18080-18098 (2022) · doi:10.3934/math.2022995
[29] Ngondiep, E., A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients, Commun Nonlinear Sci Numer Simul, 111 (2022) · Zbl 1486.65121 · doi:10.1016/j.cnsns.2022.106444
[30] Nnolim, UA, Dynamic selective edge-based integer/fractional-order partial differential equation for degraded document image binarization, Int J Image Graphics, 22, 4, 2250030 (2022) · doi:10.1142/S0219467822500309
[31] Oliveira, FA; Ferreira, RM; Lapas, LC; Vainstein, MH, Anomalous diffusion: a basic mechanism for the evolution of inhomogeneous systems, Front Phys, 7, 18 (2019) · doi:10.3389/fphy.2019.00018
[32] Pan, K.; Sun, H-W; Xu, Y.; Xu, Y., An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients, Appl Math Comput, 402 (2021) · Zbl 1510.65202
[33] Radwan AG, Khanday FA, Said LA (2021) Fractional order systems: an overview of mathematics, design, and applications for engineers
[34] Rahaman, M.; Mondal, SP; Shaikh, AA; Pramanik, P.; Roy, S.; Maiti, MK; Mondal, R.; De, D., Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model, Soft Comput, 24, 15341-15359 (2020) · Zbl 1491.90011 · doi:10.1007/s00500-020-04867-y
[35] Ren, L.; Wang, Y-M, A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients, Appl Math Comput, 312, 1-22 (2017) · Zbl 1427.65181
[36] Roul, P.; Rohil, V., A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation, Numer Algor, 90, 4, 1357-1387 (2022) · Zbl 1502.65071 · doi:10.1007/s11075-021-01233-3
[37] Salama, FM; Abd Hamid, NN, (2020) Efficient hybrid group iterative methods in the solution of two-dimensional time fractional cable equation, Adv Differ Equ, 1, 1-20 (2020) · Zbl 1482.65152
[38] Salama, FM; Ali, NHM, Fast \({O(N)}\) hybrid method for the solution of two dimensional time fractional cable equation, Compusoft, 8, 11, 3453-3461 (2019)
[39] Salama, FM; Ali, NHM, Computationally efficient hybrid method for the numerical solution of the 2D time fractional advection-diffusion equation, Int J Math Eng Manag Sci, 5, 3, 432 (2020)
[40] Salama, FM; Ali, NHM; Abd Hamid, NN, Fast \({O(N)}\) hybrid laplace transform-finite difference method in solving 2D time fractional diffusion equation, J Math Comput Sci, 23, 110-123 (2021) · doi:10.22436/jmcs.023.02.04
[41] Salama, FM; Abd Hamid, NN; Ali, NHM; Ali, U., An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions, AIMS Math, 7, 2, 2370-2392 (2022) · doi:10.3934/math.2022134
[42] Salama, FM; Abd Hamid, NN; Ali, U.; Ali, NHM, Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation, AIMS Math, 7, 9, 15854-15880 (2022) · doi:10.3934/math.2022868
[43] Salama, FM; Ali, U.; Ali, A., Numerical solution of two-dimensional time fractional mobile/immobile equation using explicit group methods, Int J Appl Comput Math, 8, 4, 1-28 (2022) · Zbl 1513.65445 · doi:10.1007/s40819-022-01408-z
[44] Savović, S.; Drljača, B.; Djordjevich, A., A comparative study of two different finite difference methods for solving advection-diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes, Ricerche di Matematica, 71, 1, 245-252 (2022) · Zbl 1490.65160 · doi:10.1007/s11587-021-00665-2
[45] Singh, H.; Srivastava, H.; Hammouch, Z.; Nisar, KS, Numerical simulation and stability analysis for the fractional-order dynamics of covid-19, Results Phys, 20 (2021) · doi:10.1016/j.rinp.2020.103722
[46] Singh A, Das S, Ong SH, Jafari H (2019) Numerical solution of nonlinear reaction-advection-diffusion equation. J Comput Nonlinear Dyn 14(4)
[47] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Communications in Nonlinear Science and Numerical Simulation, 64, 213-231 (2018) · Zbl 1509.26005 · doi:10.1016/j.cnsns.2018.04.019
[48] Sunarto, A.; Agarwal, P.; Sulaiman, J.; Chew, JVL, computational approach via half-sweep and preconditioned AOR for fractional diffusion, Intell Autom Soft Comput, 31, 2, 1173-1184 (2022) · doi:10.32604/iasc.2022.020542
[49] Taghipour, M.; Aminikhah, H., A spectral collocation method based on fractional pell functions for solving time-fractional black-scholes option pricing model, Chaos Solitons Fractals, 163 (2022) · Zbl 1507.91238 · doi:10.1016/j.chaos.2022.112571
[50] Tarasov, VE, On history of mathematical economics: application of fractional calculus, Mathematics, 7, 6, 509 (2019) · doi:10.3390/math7060509
[51] Toprakseven, Ş., A weak galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl Numer Math, 168, 1-12 (2021) · Zbl 1486.65179 · doi:10.1016/j.apnum.2021.05.021
[52] Vieira, N.; Ferreira, M.; Rodrigues, MM, Time-fractional telegraph equation with \(\psi \)-hilfer derivatives, Chaos Solitons Fractals, 162 (2022) · Zbl 1506.35275 · doi:10.1016/j.chaos.2022.112276
[53] Wang, Y-M; Wen, X., A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions, Appl Math Comput, 381 (2020) · Zbl 1474.65294
[54] Wu, L.; Pan, Y.; Yang, X., An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation, Comput Appl Math, 40, 2, 1-20 (2021) · Zbl 1476.65195 · doi:10.1007/s40314-020-01383-5
[55] Yang, Y.; Wang, J.; Chen, Y.; Liao, H-l, Compatible l2 norm convergence of variable-step l1 scheme for the time-fractional mbe model with slope selection, J Comput Phys, 467 (2022) · Zbl 07568562 · doi:10.1016/j.jcp.2022.111467
[56] Zhang, Y.; Feng, M., The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data, Comput Math Appl, 110, 1-18 (2022) · Zbl 1524.65631 · doi:10.1016/j.camwa.2022.01.033
[57] Zhang, L.; Ge, Y., Numerical solution of nonlinear advection diffusion reaction equation using high-order compact difference method, Appl Numer Math, 166, 127-145 (2021) · Zbl 1475.65089 · doi:10.1016/j.apnum.2021.04.004
[58] Zou, W.; Tang, Y.; Hosseini, VR, The numerical meshless approach for solving the 2d time nonlinear multi-term fractional cable equation in complex geometries, FRACTALS (fractals), 30, 5, 1-12 (2022) · Zbl 1496.65134
[59] Zu, C.; Yu, X., Time fractional schrödinger equation with a limit based fractional derivative, Chaos Solitons Fractals, 157 (2022) · Zbl 1498.35604 · doi:10.1016/j.chaos.2022.111941
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.