×

Topology: a theory of a pseudometric-based clustering model and its application in content-based image retrieval. (English) Zbl 1435.94040

Summary: The clustering problem has been extensively studied over the last 50 years; however, it still has the attention of researchers. This paper presents a topological basis of a pseudometric-based clustering model which takes into account the local and global topological properties of the data to be clustered, as per the definition of homogeneity measurement. The proposed approach takes into account the homogeneity effect produced when a new particle is added to a group. The additional element can be accumulated in the group if its local homogeneity is not altered and, therefore, it is not necessary to carry out tests in another group. A new group needs to be generated if the threshold of the local homogeneity of the group exceeds. Theoretical results, their implementation, and their application to the problem of Content Based Image Retrieval (CBIR) are presented. The tests were performed using three image databases widely used in the literature, which are “Vogel and Shiele,” “Oliva and Torralba,” and “L. Fei-Fei, R. Fergus and P. Perona.” The results are presented and compared with the most competitive methods available in the literature.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62H35 Image analysis in multivariate analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

GGSA; k-means++; DENDIS
Full Text: DOI

References:

[1] Xu, R.; Wunsch, D., Clustering, 1 (2008), John Wiley and Sons
[2] Xiong, H.; Wu, J.; Chen, J., K-means clustering versus validation measures: a data-distribution perspective, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39, 2, 318-331 (2009) · doi:10.1109/TSMCB.2008.2004559
[3] Theodoridis, S.; Koutroumbas, K., Pattern Recognition, 1 (2008), Academic Press
[4] Jain, A. K., Data clustering: 50 years beyond K-means, Pattern Recognition Letters, 31, 8, 651-666 (2010) · doi:10.1016/j.patrec.2009.09.011
[5] Belhaouari, S. B.; Ahmed, S.; Mansour, S., Optimized K-means algorithm, Mathematical Problems in Engineering, 2014 (2014) · doi:10.1155/2014/506480
[6] Arthur, D.; Vassilvitskii, S., K-means: the advantages of careful seeding, Proceedings of the In Proceedings of the eightteenth annual ACM-SIAM symposium on Discrete algorithms, SODA 07 · Zbl 1302.68273
[7] Xu, Y.; Qu, W.; Li, Z.; Min, G.; Li, K.; Liu, Z., Efficient k-means++ approximation with MapReduce, IEEE Transactions on Parallel and Distributed Systems, 25, 12, 3135-3144 (2014) · doi:10.1109/TPDS.2014.2306193
[8] Nazari, Z.; Kang, D.; Asharif, M. R.; Sung, Y.; Ogawa, S., A new hierarchical clustering algorithm, Proceedings of the International Conference on Intelligent Informatics and Biomedical Sciences, ICIIBMS 2015
[9] Liu, F.; Wei, Y.; Ren, M.; Hou, X.; Liu, Y., An agglomerative hierarchical clustering algorithm based on global distance measurement, Proceedings of the 7th International Conference on Information Technology in Medicine and Education (ITME)
[10] Arslan, O.; Guralnik, D.; Koditschek, D., Coordinated robot navigation via hierarchical clustering, IEEE Transactions on Robotics, 32, 352-371 (2016) · doi:10.1109/TRO.2016.2524018
[11] Rashedi, E.; Mirzaei, A.; Rahmati, M., Optimized aggregation function in hierarchical clustering combination, Intelligent Data Analysis, 20, 2, 281-291 (2016) · doi:10.3233/IDA-160805
[12] Yao, W.; Dumitru, C. O.; Loffeld, O.; Datcu, M., Semi-supervised Hierarchical Clustering for Semantic SAR Image Annotation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 5, 1993-2008 (2016) · doi:10.1109/JSTARS.2016.2537548
[13] Ros, F.; Guillaume, S., DENDIS: A new density-based sampling for clustering algorithm, Expert Systems with Applications, 56, 349-359 (2016) · doi:10.1016/j.eswa.2016.03.008
[14] Jahirabadkar, S.; Kulkarni, P., Algorithm to determine \(ε\)-distance parameter in density based clustering, Expert Systems with Applications, 41, 6, 2939-2946 (2014) · doi:10.1016/j.eswa.2013.10.025
[15] Yokoyama, S.; Bogardi-Meszoly, A.; Ishikawa, H., Ebscan, An entanglement-based algorithm for discovering dense regions in large geo-social data streams with noise (2015)
[16] Chacon, J. E., A population background for nonparametric density-based clustering, Statistical Science. A Review Journal of the Institute of Mathematical Statistics, 30, 4, 518-532 (2015) · Zbl 1426.62181 · doi:10.1214/15-STS526
[17] Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P., Automatic subspace clustering of high dimensional data for data mining applications, SIGMOD Record, 27, 2, 94-105 (1998)
[18] Zhao, Q.; Shi, Y.; Liu, Q.; Fränti, P., A grid-growing clustering algorithm for geo-spatial data, Pattern Recognition Letters, 53, 77-84 (2015) · doi:10.1016/j.patrec.2014.09.017
[19] Rashad, M. A.; El-Deeb, H.; Fakhr, M. W., Document classification using enhanced grid based clustering algorithm, Lecture Notes in Electrical Engineering, 312, 207-215 (2015) · doi:10.1007/978-3-319-06764-3_27
[20] Sajana, T.; Sheela Rani, C. M.; Narayana, K. V., A survey on clustering techniques for big data mining, Indian Journal of Science and Technology, 9, 3, 1-12 (2016)
[21] Ng, A. Y.; Jordan, M. I.; Weiss, Y., On spectral clustering: Analysis and algorithm, In Advances in Neural Information Processing Systems. MIT Press, 849-856 (2001)
[22] Yang, Y.; Ma, Z.; Yang, Y.; Nie, F.; Shen, H. T., Multitask spectral clustering by exploring intertask correlation, IEEE Transactions on Cybernetics, 45, 5, 1069-1080 (2014)
[23] Inkaya, T., A parameter-free similarity graph for spectral clustering, Expert Systems with Applications, 42, 24, 9489-9498 (2015) · doi:10.1016/j.eswa.2015.07.074
[24] Shang, R.; Zhang, Z.; Jiao, L.; Wang, W.; Yang, S., Global discriminative-based nonnegative spectral clustering, Pattern Recognition, 55, 172-182 (2016) · Zbl 1412.62085
[25] Wright, W. E., Gravitational clustering, Pattern Recognition, 9, 3, 151-166 (1977) · doi:10.1016/0031-3203(77)90013-9
[26] Rashedi, E.; Nezamabadi-Pour, H., A stochastic gravitational approach to feature based color image segmentation, Engineering Applications of Artificial Intelligence, 26, 4, 1322-1332 (2013) · doi:10.1016/j.engappai.2012.10.002
[27] Dowlatshahi, M. B.; Nezamabadi-Pour, H., GGSA: a grouping gravitational search algorithm for data clustering, Engineering Applications of Artificial Intelligence, 36, 114-121 (2014) · doi:10.1016/j.engappai.2014.07.016
[28] Kumar, V.; Chhabra, J. K.; Kumar, D., Automatic cluster evolution using gravitational search algorithm and its application on image segmentation, Engineering Applications of Artificial Intelligence, 29, 93-103 (2014) · doi:10.1016/j.engappai.2013.11.008
[29] Nikbakht, H.; Mirvaziri, H., A new algorithm for data clustering based on gravitational search algorithm and genetic operators, Proceedings of the 2015 International Symposium on Artificial Intelligence and Signal Processing, AISP 2015
[30] Mehmood, Z.; Anwar, S. M.; Ali, N.; Habib, H. A.; Rashid, M., A Novel image retrieval based on a combination of local and global histograms of visual words, Mathematical Problems in Engineering, 2016 (2016) · doi:10.1155/2016/8217250
[31] Zhou, W.; Li, H.; Tian, Q., Recent advance in content-based image retrieval: A literature survey, CoRR (2017)
[32] Yousuf, M.; Mehmood, Z.; Habib, H. A.; et al, A novel technique based on visual words fusion analysis of sparse features for effective content-based image retrieval, Mathematical Problems in Engineering, 2018 (2018) · doi:10.1155/2018/2134395
[33] Varma, A.; Kaur, D. K., Survey on content based image retrieval, International Journal of Engineering and Technology, 7, 471-476 (2018)
[34] Vogel, J.; Schiele, B., Semantic modeling of natural scenes for content-based image retrieval, International Journal of Computer Vision, 72, 2, 133-157 (2007) · doi:10.1007/s11263-006-8614-1
[35] Oliva, A.; Torralba, A., Modeling the shape of the scene: a holistic representation on the spatial envelope, Computer Vision, 42, 3, 145-175 (2001) · Zbl 0990.68601 · doi:10.1023/A:1011139631724
[36] Fei-Fei, L.; Fergus, R.; Perona, P., Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW ’04) · doi:10.1109/CVPR.2004.383
[37] Bosch, A.; Zisserman, A.; Muñoz, X., Scene classification using a hybrid generative/discriminative approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 4, 712-727 (2008) · doi:10.1109/TPAMI.2007.70716
[38] Lazebnik, S.; Schmid, C.; Ponce, J., Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, Proceedings of the Society Conference on Computer Vision and Pattern Recognition (CVPR06)
[39] Serrano-Talamantes, J. F.; Avilés-Cruz, C.; Villegas-Cortez, J.; Sossa-Azuela, J. H., Self organizing natural scene image retrieval, Expert Systems with Applications, 40, 7, 2398-2409 (2013) · doi:10.1016/j.eswa.2012.10.064
[40] National-Instruments, 2018 http://www.ni.com/en-us/shop/labview.html
[41] Begum, R.; Halse, S. V., The smart car parking system using gsm and labview, Journal of Computer and Mathematical Sciences, 9, 135-142 (2018) · doi:10.29055/jcms/740
[42] Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W., Monitoring and enhanced dynamic modeling of battery by genetic algorithm using labview applied in photovoltaic system, Electrical Engineering, 100, 1021-1038 (2018)
[43] Alam, A.; Jaffery, Z. A., A vision-based system for traffic light detection, Applications of Artificial Intelligence Techniques in Engineering, 1, 333-343 (2018)
[44] Sim, K.; Gopalkrishnan, V.; Zimek, A.; Cong, G., A survey on enhanced subspace clustering, Data Mining and Knowledge Discovery, 26, 2, 332-397 (2013) · Zbl 1270.68260 · doi:10.1007/s10618-012-0258-x
[45] Xu, D.; Tian, Y., A comprehensive survey of clustering algorithms, Annals of Data Science, 2, 165-193 (2015) · doi:10.1007/s40745-015-0040-1
[46] Dinler, D.; Tural, M. K., A Survey of Constrained Clustering (2016), Cham, Switzerland: Springer International Publishing, Cham, Switzerland
[47] Khandare, A. S.; Anandand, A.; Vishwakarma, H.; Akashe, S., Clustering algorithms: Experiment and improvements, Computing and Network Sustainability, 263-271 (2017), Singapore: Springer, Singapore
[48] Patibandla, R. S. M. L.; Veeranjaneyulu, N.; Bhateja, V.; Coello Coello, C. A.; Satapathy, S. C.; Pattnaik, P. K., Survey on clustering algorithms for unstructured data, Intelligent Engineering Informatics (2018), Singapore: Springer, Singapore
[49] Osman, M. M. A.; Syed-Yusof, S. K.; Abd Malik, N. N. N.; Zubair, S., A survey of clustering algorithms for cognitive radio ad hoc networks, Wireless Networks, 24, 1451-1475 (2018)
[50] Bindra, K.; Mishra, A.; Suryakant.; Ray, K.; Sharma, T. K.; Rawat, S.; Saini, R. K.; Bandyopadhyay, A., Effective data clustering algorithms, Soft Computing: Theories and Applications (2019), Singapore: Springer, Singapore
[51] Engelking, R., General Topology (1989), Springer International Publishing · Zbl 0684.54001
[52] Afifi, A. J.; Ashour, W. M., Image retrieval based on content using color feature, ISRN Computer Graphics, 2012 (2012) · doi:10.5402/2012/248285
[53] Liu, G.-H.; Yang, J.-Y., Content-based image retrieval using color difference histogram, Pattern Recognition, 46, 188-198 (2013) · doi:10.1016/j.patcog.2012.06.001
[54] Stricker, M. A.; Orengo, M.; Niblack, W.; Jain, R. C., Similarity of color images, Proceedings of SPIE, 2420
[55] Zhang, Q.; Canosa, R. L.; P, S., A comparison of histogram distance metrics for content-based image retrieval, Imaging and Multimedia Analytics in a Web and Mobile World, 9027 (2014)
[56] Makhoul, J.; Kubala, F.; Schwartz, R.; Weischedel, R., Performance measures for information extraction, Proceedings of the DARPA Broadcast News Workshop
[57] Mosbah, M.; Boucheham, B.; Rocha, Á.; Correia, A. M.; Adeli, H.; Reis, L. P.; Costanzo, S., Matching measures in the context of cbir: A comparative study in terms of effectiveness and efficiency, Proceedings of the Recent Advances in Information Systems and Technologies, Springer International Publishing
[58] Mehmood, Z.; Rashid, M.; Rehman, A.; Saba, T.; Dawood, H.; Dawood, H., Effect of complementary visual words versus complementary features on clustering for effective content-based image search, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 35, 5, 5421-5434 (2018) · doi:10.3233/JIFS-171137
[59] Ali, N.; Bajwa, K. B.; Sablatnig, R.; Chatzichristofis, S. A.; Iqbal, Z.; Rashid, M.; Habib, H. A.; Rubin, D. L., A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF, PLoS ONE, 11, 6, 1-20 (2016) · doi:10.1371/journal.pone.0157428
[60] Yousuf, M.; Mehmood, Z.; Habib, H. A., A novel technique based on visual words fusion analysis of sparse features for effective content-based image retrieval, Mathematical Problems in Engineering, 2018 (2018) · doi:10.1155/2018/2134395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.