×

Multi-loop adaptive internal model control based on a dynamic partial least squares model. (English) Zbl 1400.93155

Summary: A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) framework is proposed to account for plant model errors caused by slow aging, drift in operational conditions, or environmental changes. Since PLS decomposition structure enables multi-loop controller design within latent spaces, a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space. In each latent subspace, once the model error exceeds a specific threshold, online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm. Because the IMC extracts the inverse of the minimum part of the internal model as its structure, the IMC controller is self-tuned by explicitly updating the parameters, which are parts of the internal model. Both parameter convergence and system stability are briefly analyzed, and proved to be effective. Finally, the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.

MSC:

93C40 Adaptive control/observation systems
62J05 Linear regression; mixed models
Full Text: DOI

References:

[1] Abdel-Rahman, A. I.; Lim, G. J., A nonlinear partial least squares algorithm using quadratic fuzzy inference system, Journal of Chemometrics, 23, 530-537, (2009) · doi:10.1002/cem.1249
[2] Astrom, K. J.; Wittenmark, B., Self tuning regulators, Automatica, 9, 185-199, (1973) · Zbl 0249.93049 · doi:10.1016/0005-1098(73)90073-3
[3] Astrom, K. J.; Borisson, U.; Ljung, L.; Wittenmark, B., Theory and applications of self-tuning regulators, Automatica, 13, 457-476, (1977) · Zbl 0374.93024 · doi:10.1016/0005-1098(77)90067-X
[4] Bang, Y. H.; Yoo, C. K.; Lee, I. B., Nonlinear PLS modeling with fuzzy inference system, Chemometrics and Intelligent Laboratory Systems, 64, 137-155, (2002) · doi:10.1016/S0169-7439(02)00084-9
[5] Chen, J. H.; Cheng, Y. C., Applying partial least squares based decomposition structure to multiloop adaptive proportional-integral-derivative controllers in nonlinear processes, Industrial & Engineering Chemistry Research, 43, 5888-5898, (2004) · doi:10.1021/ie040013b
[6] Chen, J. H.; Cheng, Y. C.; Yea, Y. Z., Multiloop PID controller design using partial least squares decoupling structure, Korean Journal of Chemical Engineering, 22, 173-183, (2005) · doi:10.1007/BF02701481
[7] Datta, A.; Ochoa, J., Adaptive internal model control design and stability analysis, Automatica, 32, 261-266, (1996) · Zbl 0854.93059 · doi:10.1016/0005-1098(96)85557-9
[8] Datta, A.; Ochoa, J., Adaptive internal model control: H_{2} optimization for stable plants, Automatica, 34, 75-82, (1998) · Zbl 0913.93040 · doi:10.1016/S0005-1098(97)00163-5
[9] Datta, A.; Xing, L., The theory and design of adaptive internal model control schemes, Proceedings of the American Control Conference, Philadelphia, PA, USA, 6, 3677-3684, (1998)
[10] Datta, A.; Xing, L., Adaptive internal model control: H infinity optimization for stable plants, IEEE Transactions on Automatic Control, 44, 2130-2134, (1999) · Zbl 1136.93333 · doi:10.1109/9.802930
[11] Doymaz, F.; Palazoglu, A.; Romagnoli, J. A., Orthogonal nonlinear partial least-squares regression, Industrial & Engineering Chemistry Research, 42, 5836-5849, (2003) · doi:10.1021/ie0109051
[12] Garcia, C. E.; Morari, M., Internal model control. A unifying review and some new results, Industrial & Engineering Chemistry Process Design and Development, 21, 308-323, (1982) · doi:10.1021/i200017a016
[13] Geladi, P.; Kowalski, B. R., Partial least-squares regression: a tutorial, Analytica Chimica Acta, 185, 1-17, (1986) · doi:10.1016/0003-2670(86)80028-9
[14] Goodwin, G. C.; Ramadge, P. J.; Caines, P. E., Discrete-time multivariable adaptive control, IEEE Transactions on Automatic Control, 25, 449-456, (1980) · Zbl 0429.93034 · doi:10.1109/TAC.1980.1102363
[15] Hu, B.; Zheng, P. Y.; Liang, J., Multi-loop internal model controller design based on a dynamic PLS framework, Chinese Journal of Chemical Engineering, 18, 277-285, (2010) · doi:10.1016/S1004-9541(08)60353-5
[16] Kaspar, M. H.; Ray, W. H., Chemometric methods for process monitoring and high-performance controller-design, AIChE Journal, 38, 1593-1608, (1992) · doi:10.1002/aic.690381010
[17] Kaspar, M. H.; Ray, W. H., Dynamic PLS modeling for process control, Chemical Engineering Science, 48, 3447-3461, (1993) · doi:10.1016/0009-2509(93)85001-6
[18] Qi, D. L.; Yao, L. B., Hybrid internal model control and proportional control of chaotic dynamical systems, Journal of Zhejiang University-SCIENCE, 5, 62-67, (2004) · doi:10.1631/jzus.2004.0062
[19] Qin, S. J.; Mcavoy, T. J., Nonlinear PLS modeling using neural networks, Computers & Chemical Engineering, 16, 379-391, (1992) · doi:10.1016/0098-1354(92)80055-E
[20] Sastry, S.M.B., 1994. Adaptive Control: Stability, Convergence, and Robustness. Prentice Hall, New Jersey, USA.
[21] Su, C. L.; Wang, S. Q., Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model, Journal of Zhejiang University-SCIENCE A, 7, 1723-1732, (2006) · Zbl 1106.93037 · doi:10.1631/jzus.2006.A1723
[22] Wold, S., Nonlinear partial least-squares modeling II. spline inner relation, Chemometrics and Intelligent Laboratory Systems, 14, 71-84, (1992) · doi:10.1016/0169-7439(92)80093-J
[23] Wold, S.; Kettanehwold, N.; Skagerberg, B., Nonlinear PLS modeling, Chemometrics and Intelligent Laboratory Systems, 7, 53-65, (1989) · doi:10.1016/0169-7439(89)80111-X
[24] Wold, S.; Sjostrom, M.; Eriksson, L., PLS-regression: a basic tool of chemometrics, Chemometrics and Intelligent Laboratory Systems, 58, 109-130, (2001) · doi:10.1016/S0169-7439(01)00155-1
[25] Xie, W. F.; Rad, A. B., Fuzzy adaptive internal model control, IEEE Transactions on Industrial Electronics, 47, 193-202, (2000) · doi:10.1109/41.824142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.