×

Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. (English) Zbl 1346.93384

Summary: This paper concerns the state and parameter estimation problem for an input nonlinear state-space system with colored noise. By using the data filtering and the over-parameterization technique, we transform the original nonlinear state-space system into two identification models with filtered states: one containing the system parameters and the other containing the noise model’s parameters. A combined state and parameter estimation algorithm is developed for identifying the state-space system. The key is that the estimation of system parameters uses the estimated states, and the estimation of states uses the preceding parameter estimates. A simulation example is provided to show that the proposed algorithm can work well.

MSC:

93E11 Filtering in stochastic control theory
Full Text: DOI

References:

[1] M.S. Ahmad, O. Kukrer, A. Hocanin, Recursive inverse adaptive filtering algorithm. Digit. Signal Process. 21(4), 491-496 (2011) · doi:10.1016/j.dsp.2011.03.001
[2] R. Arablouei, K. Dogancay, S. Werner, Y.F. Huang, Adaptive distributed estimation based on recursive least-squares and partial diffusion. IEEE Trans. Signal Process. 62(14), 3510-3522 (2014) · Zbl 1394.94047 · doi:10.1109/TSP.2014.2327005
[3] E.W. Bai, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333-338 (1998) · Zbl 0915.93018 · doi:10.1016/S0005-1098(97)00198-2
[4] E.W. Bai, D. Li, Convergence of the iterative Hammerstein system identification algorithm. IEEE Trans. Autom. Control 49(11), 1929-1940 (2004) · Zbl 1365.93098 · doi:10.1109/TAC.2004.837592
[5] V.A. Bavdekar, A.P. Deshpande, S.C. Patwardhan, Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Control 21(4), 585-601 (2011) · doi:10.1016/j.jprocont.2011.01.001
[6] L. Chen, L.L. Han, B. Huang, F. Liu, Parameter estimation for a dual-rate system with time delay. ISA Trans. 53(5), 1368-1376 (2014) · Zbl 1324.93019 · doi:10.1016/j.isatra.2014.01.001
[7] F. Ding, Y. Gu, Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delay. Circuits Syst. Signal Process. 32(2), 585-599 (2013) · doi:10.1007/s00034-012-9463-5
[8] F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403-412 (2014) · Zbl 1449.93254 · doi:10.1016/j.apm.2013.06.007
[9] F. Ding, Hierarchical parameter estimation algorithms for multivariable systems using measurement information. Inform. Sci. 277, 396-405 (2014) · Zbl 1354.93161 · doi:10.1016/j.ins.2014.02.103
[10] F. Ding, State filtering and parameter estimation for state space systems with scarce measurements. Signal Process. 104, 369-380 (2014) · doi:10.1016/j.sigpro.2014.03.031
[11] F. Ding, Y.J. Wang, J. Ding, Recursive least squares parameter identification for systems with colored noise using the filtering technique and the auxiliary model. Digit. Signal Process. 37, 100-108 (2015) · doi:10.1016/j.dsp.2014.10.005
[12] C. El-Kasri, A. Hmamed, F. Tadeo, Reduced-order H-infinity filters for uncertain 2-D continuous systems, via LMIs and polynomial matrices. Circuits Syst. Signal Process. 33(4), 1189-1214 (2014) · doi:10.1007/s00034-013-9689-x
[13] H. Fang, J. Wu, Y. Shi, Genetic adaptive state estimation with missing input/output data, in Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 224(5), 611-617 (2010) · Zbl 1364.93172
[14] H.J. Gao, J. Lam, C.H. Wang, S.Y. Xu, Robust H-infinity filtering for 2D stochastic systems. Circuits Syst. Signal Process. 23(6), 479-505 (2004) · Zbl 1175.93222 · doi:10.1007/s00034-004-1121-0
[15] Y. Gu, X.L. Lu, R.F. Ding, Parameter and state estimation algorithm for a state space model with a one-unit state delay. Circuits Syst. Signal Process. 32(5), 2267-2280 (2013) · doi:10.1007/s00034-013-9569-4
[16] Y.B. Hu, Iterative and recursive least squares estimation algorithms for moving average systems. Simul. Model. Pract. Theory 34, 12-19 (2013) · doi:10.1016/j.simpat.2012.12.009
[17] Y.B. Hu, B.L. Liu, Q. Zhou, A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems. Appl. Math. Comput. 247, 218-224 (2014) · Zbl 1343.62059 · doi:10.1016/j.amc.2014.08.096
[18] Y.B. Hu, B.L. Liu, Q. Zhou, C. Yang, Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises. Circuits Syst. Signal Process. 33(2), 655-664 (2014) · doi:10.1007/s00034-013-9652-x
[19] A.K. Kohli, A. Rai, Numeric variable forgetting factor RLS algorithm for second-order Volterra filtering. Circuits Syst. Signal Process. 32(1), 223-232 (2013) · doi:10.1007/s00034-012-9445-7
[20] H. Li, Y. Shi, Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chains. Automatica 48(1), 159-166 (2012) · Zbl 1244.93158 · doi:10.1016/j.automatica.2011.09.045
[21] J.H. Li, Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91-96 (2013) · Zbl 1255.65119 · doi:10.1016/j.aml.2012.03.038
[22] Y.J. Liu, F. Ding, Y. Shi, An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962-970 (2014) · Zbl 1298.93227 · doi:10.1016/j.automatica.2013.12.025
[23] L. Ljung, Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 24(1), 36-50 (1979) · Zbl 0399.93054 · doi:10.1109/TAC.1979.1101943
[24] X.Y. Ma, F. Ding, Gradient-based parameter identification algorithms for observer canonical state space systems using state estimates. Circuits Syst. Signal Process. 34(5), 1697-1709 (2015) · Zbl 1341.93091
[25] Z. Mao, B. Jiang, P. Shi, H-infinity fault detection filter design for networked control systems modelled by discrete Markovian jump systems. IET Control Theory Appl. 1(5), 1336-1343 (2007) · doi:10.1049/iet-cta:20060431
[26] H. Miranda, P. Cortes, J.I. Yuz, J. Rodriguez, Predictive torque control of induction machines based on state-space models. IEEE Trans. Ind. Electron. 56(6), 1916-1924 (2009) · Zbl 1170.35407 · doi:10.1109/TIE.2009.2014904
[27] H. Peng, G. Kitagawa, T. Takanami, N. Matsumoto, State-space modeling for seismic signal analysis. Appl. Math. Model. 38(2), 738-746 (2014) · Zbl 1427.86010 · doi:10.1016/j.apm.2013.07.008
[28] J. Prakash, B. Huang, S.L. Shah, Recursive constrained state estimation using modified extended Kalman filter. Comput. Chem. Eng. 65, 9-17 (2014) · doi:10.1016/j.compchemeng.2014.02.013
[29] Y. Shi, H. Fang, Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538-551 (2010) · Zbl 1222.93228 · doi:10.1080/00207170903273987
[30] Y. Shi, B. Yu, Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754-760 (2011) · Zbl 1215.93045 · doi:10.1016/j.automatica.2011.01.022
[31] T. Södersöm, M. Hong, J. Schoukens, R. Pintelon, Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification. Automatica 46(4), 721-727 (2010) · Zbl 1193.93180 · doi:10.1016/j.automatica.2010.01.026
[32] B. Sun, D.Q. Zhu, S.X. Yang, A bio-inspired filtered backstepping cascaded tracking control of 7000 m manned submarine vehicle. IEEE Trans. Ind. Electron. 61(7), 3682-3692 (2014) · doi:10.1109/TIE.2013.2267698
[33] J.S.H. Tsai, C.T. Wang, C.C. Kuang, S.M. Guo, L.S. Shieh, C.W. Chen, A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems. Appl. Math. Model. 34(10), 3030-3054 (2010) · Zbl 1201.93079 · doi:10.1016/j.apm.2010.01.011
[34] A. Tulsyan, B. Huang, R.B. Gopaluni, J.F. Forbes, On simultaneous on-line state and parameter estimation in non-linear state-space models. J. Process Control 23(4), 516-526 (2010) · doi:10.1016/j.jprocont.2013.01.010
[35] M. Viberg, B. Wahlberg, B. Ottersten, Analysis of state space system identification methods based on instrumental variables and subspace fitting. Automatica 33(9), 1603-1616 (1997) · Zbl 1422.93058 · doi:10.1016/S0005-1098(97)00097-6
[36] J. Vörös, Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203-2206 (2003) · Zbl 1364.93172 · doi:10.1109/TAC.2003.820146
[37] J. Vörös, Identification of Hammerstein systems with time-varying piecewise-linear characteristics. IEEE Trans. Circuits Syst. II, Exp. Briefs 52(12), 865-869 (2005) · doi:10.1109/TCSII.2005.853339
[38] J. Vörös, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities. Syst. Control Lett. 56(2), 99-105 (2007) · Zbl 1112.93019 · doi:10.1016/j.sysconle.2006.08.001
[39] D.Q. Wang, Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648-1657 (2011) · doi:10.1049/iet-cta.2010.0416
[40] X.H. Wang, F. Ding, Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems. J. Franklin Inst. Eng. Appl. Math. 351(10), 4749-4764 (2014) · Zbl 1395.93521 · doi:10.1016/j.jfranklin.2014.07.004
[41] D.Q. Wang, F. Ding, X.M. Liu, Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75(1-2), 49-61 (2014) · Zbl 1281.93050 · doi:10.1007/s11071-013-1048-8
[42] C. Wang, T. Tang, Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems. Appl. Math. Lett. 29, 36-41 (2014) · Zbl 1311.93082 · doi:10.1016/j.aml.2013.10.011
[43] C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769-780 (2014) · Zbl 1314.93013 · doi:10.1007/s11071-014-1338-9
[44] A.G. Wu, Y.Y. Qian, W.J. Wu, Bias compensation-based recursive least-squares estimation with forgetting factors for output error moving average systems. IET Signal Process. 8(5), 483-494 (2014) · doi:10.1049/iet-spr.2013.0327
[45] Y.S. Xiao, N. Yue, Parameter estimation for nonlinear dynamical adjustment models. Math. Comput. Model. 54(5-6), 1561-1568 (2011) · Zbl 1228.93116 · doi:10.1016/j.mcm.2011.04.027
[46] R.D. Zhang, A.K. Xue, S.Q. Wang, J.M. Zhang, An improved state-space model structure and a corresponding predictive functional control design with improved control performance. Int. J. Control 85(8), 1146-1161 (2012) · Zbl 1417.93203 · doi:10.1080/00207179.2012.679971
[47] D.Q. Zhu, W.C. Li, M.Z. Yan, S.X. Yang, The path planning of AUV based on D-S information fusion map building and bio-inspired neural network in unknown dynamic environment. Int. J. Adv. Robot. Syst. (2014). doi:10.5772/56346 · Zbl 1449.93254
[48] D.Q. Zhu, H. Huang, S.X. Yang, Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in 3D underwater workspace. IEEE Trans. Cybern. 43(2), 504-514 (2013) · doi:10.1109/TSMCB.2012.2210212
[49] D.Q. Zhu, B. Sun, S.X. Yang, The bio-inspired neural network based hybrid sliding-mode tracking control for open-frame underwater vehicles. Eng. Appl. Artif. Intell. 26(4), 2260-2269 (2013) · doi:10.1016/j.engappai.2013.08.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.