×

Output tracking of time-delay Hamiltonian descriptor systems under saturation constraints. (English) Zbl 1489.93034

Summary: In this paper, the output tracking problem of Hamiltonian descriptor systems under the influence of saturation and time delay is investigated. In order to achieve fast output tracking and reduce tracking overshoot, an extended composite nonlinear feedback (ECNF) control method is proposed for Hamiltonian descriptor systems. Considering the special form of Hamiltonian descriptor system, based on the method of model transformation, the closed-loop Hamiltonian descriptor system obtained by introducing ECNF controller is replaced by two subsystems without singularity, so as to facilitate the later processing. For two different types of time delays, the criteria of asymptotic output tracking for closed-loop Hamiltonian descriptor systems are obtained respectively. Finally, the control effect of the ECNF method is tested by selecting a practical example and a numerical example.

MSC:

93B52 Feedback control
93C43 Delay control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Benner, P.; Sokolov, V. I., Partial realization of descriptor systems, Syst. Control Lett., 55, 11, 929-938 (2006) · Zbl 1113.93026
[2] Benner, P.; Sima, V.; Voigt, M., \(L_\infty \)-norm computation for continuous-time descriptor systems using structured matrix pencils, IEEE Trans. Automat. Contr., 57, 1, 233-238 (2012) · Zbl 1369.93174
[3] Popli, N.; Pequito, S.; Kar, S., Selective strong structural minimum-cost resilient co-design for regular descriptor linear systems, Automatica, 102, 80-85 (2019) · Zbl 1415.93054
[4] Gao, R.; Zhai, D.; Cheng, J., Decentralized static output feedback sliding mode control for interconnected descriptor systems via linear sliding variable, Appl. Math. Comput., 357, 185-198 (2019) · Zbl 1428.93074
[5] Kaczorek, T., Descriptor fractional linear systems with regular pencils, Asian J. Control, 15, 4, 1051-1064 (2013) · Zbl 1286.93086
[6] Belov, A. A.; Andrianova, O. G., Robust state-feedback \(H_\infty\) control for discrete-time descriptor systems with norm-bounded parametric uncertainties, Int. J. Syst. Sci., 50, 6, 1303-1312 (2019) · Zbl 1483.93187
[7] Niamsup, P.; Phat, V. N., State feedback stabilization of linear descriptor time-varying delay systems, Trans. Inst. Meas. Control, 42, 12, 2191-2197 (2020)
[8] Barbosa, K. A.; Souza, C. E.; Coutinho, D., Admissibility analysis of discrete linear time-varying descriptor systems, Automatica, 91, 136-143 (2018) · Zbl 1387.93127
[9] Lu, X.; Li, H., Prescribed finite-time \(H_\infty\) control for nonlinear descriptor systems, IEEE Trans. Circuits Syst. II Express Briefs, 68, 8, 2917-2921 (2021)
[10] Li, M.; Sun, L., Finite-time stabilisation for a class of nonlinear descriptor systems, IET Control Theory Appl., 12, 17, 2399-2406 (2018)
[11] Zhong, Z.; Wang, X.; Lam, H. K., Finite-time fuzzy sliding mode control for nonlinear descriptor systems, IEEE/CAA J. Autom. Sin., 8, 6, 1141-1152 (2021)
[12] Lu, X.; Li, H., A hybrid control approach to \(H_\infty\) problem of nonlinear descriptor systems with actuator saturation, IEEE Trans. Automat. Contr., 66, 10, 4960-4966 (2021) · Zbl 1536.93396
[13] Li, J.; Zhang, Q.; Ren, J., Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback, Int. J. Syst. Sci., 48, 14, 2997-3006 (2017) · Zbl 1386.93255
[14] Dirksz, D. A.; Scherpen, J. M.A., Structure preserving adaptive control of port-Hamiltonian systems, IEEE Trans. Automat. Contr., 57, 11, 2880-2885 (2012) · Zbl 1369.93299
[15] Sun, W.; Peng, L., Robust adaptive control of uncertain stochastic Hamiltonian systems with time varying delay, Asian J. Control., 18, 2, 642-651 (2016) · Zbl 1346.93391
[16] Qureshi, A.; Ferik, S. E.; Lewis, F. L., \(L_2\) neuro-adaptive tracking control of uncertain port-controlled Hamiltonian systems, IET Control Theory Appl., 9, 12, 1781-1790 (2015)
[17] Fu, B.; Li, S.; Wang, X., Output feedback based simultaneous stabilization of two port-controlled Hamiltonian systems with disturbances, J. Franklin Inst., 356, 15, 8154-8166 (2019) · Zbl 1423.93302
[18] Yang, Y.; Wunsch, D.; Yin, Y., Hamiltonian-driven adaptive dynamic programming for continuous nonlinear dynamical systems, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1929-1940 (2017)
[19] W. Sun, X. Lv, M. Qiu, Distributed estimation for stochastic Hamiltonian systems with fading wireless channels, IEEE Trans. Cybern. In press. doi:10.1109/TCYB.2020.3023547
[20] Fu, B.; Wang, X.; Wang, Q., Protocol design for group output consensus of disturbed port-controlled Hamiltonian multi-agent systems, J. Franklin Inst., 358, 18, 9867-9889 (2021) · Zbl 1480.93382
[21] Alkrunz, M.; Yalcin, Y., Adaptive interconnection and damping assignment passivity-based control for linearly parameterized discrete-time port controlled Hamiltonian systems via i&i approach, Int. J. Adapt. Control Signal Process, 35, 1, 69-88 (2021) · Zbl 1543.93106
[22] Ren, Y.; Sun, W., Robust adaptive control for robotic systems with input time-varying delay using Hamiltonian method, IEEE/CAA J. Autom. Sin., 5, 4, 852-859 (2018)
[23] Zhang, H.; Yin, T.; Wang, J., A control strategy of hamilton realization and mechanics lagrangization in doubly-fed wind power generation system, Int. J. Electric. Power Energy Syst., 78, 569-575 (2016)
[24] Fu, B.; Wang, Q.; He, W., Nonlinear disturbance observer-based control for a class of port-controlled Hamiltonian disturbed systems, IEEE Access, 6, 50299-50305 (2018)
[25] Liu, L.; Shao, N.; Lin, M., Hamilton-based adaptive robust control for the speed and tension system of reversible cold strip rolling mill, Int. J. Adapt. Control Signal Process, 33, 4, 626-643 (2019) · Zbl 1417.93173
[26] Wang, G.; Sun, W.; Wang, S., Stabilization of wind farm integrated transmission system with input delay, AIMS Math., 6, 9, 9177-9193 (2021) · Zbl 1525.93297
[27] Qureshi, A.; Ferik, S. E.; Lewis, F. L., Neuro-based canonical transformation of port controlled Hamiltonian systems, Int. J. Control Autom. Syst., 18, 12, 3101-3111 (2020)
[28] Zhang, Z.; Wong, N., Passivity test of immittance descriptor systems based on generalized Hamiltonian methods, IEEE Trans. Circuits Syst. II Express Briefs, 57, 1, 61-65 (2010)
[29] Sun, L.; Feng, G.; Wang, Y., Finite-time stabilization and \(H_\infty\) control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems, Automatica, 50, 8, 2090-2097 (2014) · Zbl 1297.93132
[30] Yang, R.; Sun, L.; Zhang, G., Finite-time stability and stabilization of nonlinear singular time-delay systems via Hamiltonian method, J. Franklin Inst., 356, 12, 5961-5992 (2019) · Zbl 1416.93157
[31] Sun, W.; Liu, D.; Tang, Y., Global asymptotic stabilisation and \(H_\infty\) control for a class of nonlinear Hamiltonian singular systems with delays and saturation, Int. J. Syst. Sci., 51, 5, 811-825 (2020) · Zbl 1483.93505
[32] Huang, C.; Huang, H., Observer-based robust preview tracking control for a class of non-linear systems, IET Control Theory Appl., 14, 7, 991-998 (2020) · Zbl 07907170
[33] Sun, H.; Yang, Z.; Meng, B., Tracking control of a class of non-linear systems with applications to cruise control of air-breathing hypersonic vehicles, Int. J. Control, 88, 5, 885-896 (2015) · Zbl 1316.93051
[34] Guo, M.; Xu, D.; Liu, L., Adaptive nonlinear ship tracking control with unknown control direction, Int. J. Robust Nonlinear Control, 28, 7, 2828-2840 (2018) · Zbl 1391.93125
[35] Li, T.; Sun, Z.; Yang, S., Output tracking control for generalised high-order nonlinear system with serious uncertainties, Int. J. Control, 90, 2, 322-333 (2017) · Zbl 1359.93184
[36] Geng, W.; Lin, C.; Chen, B., Observer-based stabilizing control for fractional-order systems with input delay, ISA Trans., 100, 103-108 (2020)
[37] Song, G.; Lam, J.; Xu, S., Quantized feedback stabilization of continuous time-delay systems subject to actuator saturation, Nonlinear Anal. Hybrid. Syst., 30, 1-13 (2018) · Zbl 1408.93103
[38] Li, X.; Yang, X.; Song, S., Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103, 135-140 (2019) · Zbl 1415.93188
[39] Sheng, Z.; Lin, C.; Chen, B., Asymmetric Lyapunov-Krasovskii functional method on stability of time-delay systems, Int. J. Robust Nonlinear Control, 31, 7, 2847-2854 (2021) · Zbl 1526.93198
[40] Wu, J.; Huang, L., Global stabilization of linear systems subject to input saturation and time delays, J. Franklin Inst., 358, 1, 633-649 (2021) · Zbl 1455.93146
[41] Li, X.; Song, S.; Wu, J., Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automat. Contr., 64, 10, 4024-4034 (2019) · Zbl 1482.93452
[42] He, Y.; Chen, B. M.; Wu, C., Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation, Syst. Control Lett., 54, 5, 455-469 (2005) · Zbl 1129.93414
[43] Ghaffari, V., Optimal tuning of composite nonlinear feedback control in time-delay nonlinear systems, J. Franklin Inst., 357, 2, 1331-1356 (2020) · Zbl 1429.93114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.