×

Delay-range-dependent robust constrained model predictive control for industrial processes with uncertainties and unknown disturbances. (English) Zbl 1421.93044

Summary: A delay-range-dependent robust constrained model predictive control is proposed for discrete-time system with uncertainties and unknown disturbances. The dynamic characteristic of the discrete-time system is established as a new extended state space model in which state variables and output tracking error are integrated and regulated independently. It is used as the design of control law of system, which cannot only guarantee the convergence and tracking performance but also offer more degrees of freedom for designed controller. Unlike the traditional robust model predictive control (RMPC), the novel, less conservative, and more simplified delay-range-dependent stable conditions are derived by linear matrix inequality (LMI) theory and some relaxed technologies, which make use of the information of the upper and lower bounds of the time-varying delay. Meanwhile, the \(H_\infty\) performance index is introduced in the RMPC controller design, which can reject any unknown bounded disturbances. As a result, the design controller has better abilities of both tracking and disturbance rejection. The control results on the liquid level of tank system show that the proposed control method is effective and feasible.

MSC:

93B35 Sensitivity (robustness)
93B52 Feedback control
93C73 Perturbations in control/observation systems
93C95 Application models in control theory

References:

[1] Ang, K. H.; Chong, G.; Li, Y., PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13, 4, 559-576 (2005) · doi:10.1109/TCST.2005.847331
[2] Brend, O.; Freeman, C.; French, M., Multiple-model adaptive control of functional electrical stimulation, IEEE Transactions on Control Systems Technology, 23, 5, 1901-1913 (2015) · doi:10.1109/tcst.2015.2394508
[3] Li, H.; Yu, J.; Hilton, C.; Liu, H., Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Transactions on Industrial Electronics, 60, 8, 3328-3338 (2013) · doi:10.1109/TIE.2012.2202354
[4] Locatelli, A.; Schiavoni, N., Fault-tolerant pole-placement in double-integrator networks, IEEE Transactions on Automatic Control, 57, 11, 2912-2917 (2012) · Zbl 1369.93226 · doi:10.1109/tac.2012.2192360
[5] Pao, Y. H.; Phillips, S. M.; Sobajic, D. J., Neural-net computing and the intelligent control of systems, International Journal of Control, 56, 2, 263-289 (1992) · Zbl 0764.93023 · doi:10.1080/00207179208934315
[6] Su, C.; Shi, H.; Li, P.; Cao, J., Advanced control in a delayed coking furnace, Measurement and Control, 48, 2, 54-59 (2015) · doi:10.1177/0020294015569259
[7] Wang, L.; Shen, Y.; Yu, J.; Li, P.; Zhang, R.; Gao, F., Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes, International Journal of Systems Science, 49, 2, 324-343 (2017) · Zbl 1385.93027 · doi:10.1080/00207721.2017.1402215
[8] Wang, L.; Liu, B.; Yu, J.; Li, P.; Zhang, R.; Gao, F., Delay-range-dependent-based hybrid iterative learning fault-tolerant guaranteed cost control for multiphase batch processes, Industrial & Engineering Chemistry Research, 57, 8, 2932-2944 (2018) · doi:10.1021/acs.iecr.7b04524
[9] Qin, S. J.; Badgwell, T. A., A survey of industrial model predictive control technology, Control Engineering Practice, 11, 7, 733-764 (2003) · doi:10.1016/S0967-0661(02)00186-7
[10] Richalet, J.; Rault, A.; Testud, J. L.; Papon, J., Model predictive heuristic control: application to industrial processes, Automatica, 14, 5, 413-428 (1978) · doi:10.1016/0005-1098(78)90001-8
[11] Cutler, C. R.; Ramaker, B. L., Dynamic matrix control—a computer control algorithm, Proceedings of the Joint Automatic Control Conference
[12] Clarke, D. W.; Mohtadi, C.; Tuffs, P. S., Generalized predictive control—part I. The basic algorithm, Automatica, 23, 2, 137-148 (1987) · Zbl 0621.93032 · doi:10.1016/0005-1098(87)90087-2
[13] Kuntze, H. B.; Jacubasch, A.; Richalet, J.; Arber, C., On the predictive functional control of an elastic industrial robot, 1986 25th IEEE Conference on Decision and Control · doi:10.1109/CDC.1986.267314
[14] Bououden, S.; Chadli, M.; Karimi, H. R., An ant colony optimization-based fuzzy predictive control approach for nonlinear processes, Information Sciences, 299, 143-158 (2015) · Zbl 1360.93372 · doi:10.1016/j.ins.2014.11.050
[15] Liu, H.; Li, S., Speed control for PMSM servo system using predictive functional control and extended state observer, IEEE Transactions on Industrial Electronics, 59, 2, 1171-1183 (2012) · doi:10.1109/TIE.2011.2162217
[16] Salehinia, S.; Ghaffari, A.; Khodayari, A.; Khajavi, M. N.; Alimardani, F., Modelling and controlling of car-following behavior in real traffic flow using ARMAX identification and model predictive control, International Journal of Automotive Technology, 17, 3, 535-547 (2016) · doi:10.1007/s12239-016-0054-5
[17] Salsbury, T.; Mhaskar, P.; Qin, S. J., Predictive control methods to improve energy efficiency and reduce demand in buildings, Computers and Chemical Engineering, 51, 77-85 (2013) · doi:10.1016/j.compchemeng.2012.08.003
[18] Shi, H.; Su, C.; Cao, J.; Li, P.; Liang, J.; Zhong, G., Nonlinear adaptive predictive functional control based on the Takagi-Sugeno model for average cracking outlet temperature of the ethylene cracking furnace, Industrial & Engineering Chemistry Research, 54, 6, 1849-1860 (2015) · doi:10.1021/ie503531z
[19] Shi, H.; Su, C. L.; Cao, J. T.; Li, P.; Song, Y. L.; Li, N. B., Incremental multivariable predictive functional control and its application in a gas fractionation unit, Journal of Central South University, 22, 12, 4653-4668 (2015) · doi:10.1007/s11771-015-3016-6
[20] Lopez-Negrete, R.; D’Amato, F. J.; Biegler, L. T.; Kumar, A., Fast nonlinear model predictive control: formulation and industrial process applications, Computers & Chemical Engineering, 51, 14, 55-64 (2013) · doi:10.1016/j.compchemeng.2012.06.011
[21] Pang, Q.; Zou, T.; Cong, Q.; Wang, Y., Constrained model predictive control with economic optimization for integrating process, Canadian Journal of Chemical Engineering, 93, 8, 1462-1473 (2015) · doi:10.1002/cjce.22227
[22] Rawlings, J. B.; Risbeck, M. J., Model predictive control with discrete actuators: theory and application, Automatica, 78, 258-265 (2017) · Zbl 1357.93038 · doi:10.1016/j.automatica.2016.12.024
[23] Yang, T.; Qiu, W.; Ma, Y.; Chadli, M.; Zhang, L., Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes, Neurocomputing, 136, 1, 88-95 (2014) · doi:10.1016/j.neucom.2014.01.025
[24] Zhang, R.; Wu, S.; Gao, F., State space model predictive control for advanced process operation: a review of recent development, new results, and insight, Industrial & Engineering Chemistry Research, 56, 18, 5360-5394 (2017) · doi:10.1021/acs.iecr.7b01319
[25] Bououden, S.; Chadli, M.; Karimi, H. R., A robust predictive control design for nonlinear active suspension systems, Asian Journal of Control, 18, 1, 122-132 (2016) · Zbl 1338.93147 · doi:10.1002/asjc.1180
[26] Ding, B.; Gao, C.; Ping, X., Dynamic output feedback robust MPC using general polyhedral state bounds for the polytopic uncertain system with bounded disturbance, Asian Journal of Control, 18, 2, 699-708 (2016) · Zbl 1346.93161 · doi:10.1002/asjc.1082
[27] Khani, F.; Haeri, M., Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models, Chemical Engineering Science, 129, 223-231 (2015) · doi:10.1016/j.ces.2015.02.021
[28] Mayne, D. Q.; Seron, M. M.; Raković, S. V., Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41, 2, 219-224 (2005) · Zbl 1066.93015 · doi:10.1016/j.automatica.2004.08.019
[29] Su, C. L.; Zhao, J. C.; Li, P., Robust predictive control for a class of multiple time delay uncertain systems with nonlinear disturbance, Acta Automatica Sinica, 39, 5, 644-649 (2013) · doi:10.3724/sp.j.1004.2013.00644
[30] Wu, S.; Jin, Q.; Zhang, R.; Zhang, J.; Gao, F., Improved design of constrained model predictive tracking control for batch processes against unknown uncertainties, ISA Transactions, 69, 273-280 (2017) · doi:10.1016/j.isatra.2017.04.006
[31] Ding, S.; Wang, Z.; Wang, J.; Zhang, H., \( \mathcal{H}_\infty\) state estimation for memristive neural networks with time-varying delays: the discrete-time case, Neural Networks, 84, 47-56 (2016) · Zbl 1429.93365 · doi:10.1016/j.neunet.2016.08.002
[32] Ding, S.; Wang, Z.; Zhang, H., Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, IEEE Transactions on Neural Networks and Learning Systems, 29, 3, 618-630 (2018) · doi:10.1109/TNNLS.2016.2631624
[33] Li, Z.; Huang, C.; Yan, H., Stability analysis for systems with time delays via new integral inequalities, IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP, 99, 1-7 (2017) · doi:10.1109/TSMC.2017.2746624
[34] Wang, L.; Zhu, C.; Yu, J.; Ping, L.; Zhang, R.; Gao, F., Fuzzy iterative learning control for batch processes with interval time-varying delays, Industrial & Engineering Chemistry Research, 56, 14, 3993-4001 (2017) · doi:10.1021/acs.iecr.6b04637
[35] Yan, H.; Yang, Q.; Zhang, H.; Yang, F.; Zhan, X., Distributed H∞ state estimation for a class of filtering networks with time-varying switching topologies and packet losses, IEEE Transactions on Systems, Man, and Cybernetics: Systems, PP, 99, 1-11 (2017) · doi:10.1109/TSMC.2017.2708507
[36] Bououden, S.; Chadli, M.; Zhang, L.; Yang, T., Constrained model predictive control for time-varying delay systems: application to an active car suspension, International Journal of Control, Automation and Systems, 14, 1, 51-58 (2016) · doi:10.1007/s12555-015-2009-4
[37] Chen, Q. X.; He, D. F.; Yu, L., Input-to-state stability of min-max MPC scheme for nonlinear time-varying delay systems, Asian Journal of Control, 14, 2, 489-501 (2012) · Zbl 1286.93155 · doi:10.1002/asjc.314
[38] Franzè, G.; Tedesco, F.; Famularo, D., Model predictive control for constrained networked systems subject to data losses, Automatica, 54, 272-278 (2015) · Zbl 1318.93080 · doi:10.1016/j.automatica.2015.02.018
[39] Jeong, S. C.; Park, P. G., Constrained MPC algorithm for uncertain time-varying systems with state-delay, IEEE Transactions on Automatic Control, 50, 2, 257-263 (2005) · Zbl 1365.93225 · doi:10.1109/TAC.2004.841920
[40] Kothare, M. V.; Balakrishnan, V.; Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 10, 1361-1379 (1996) · Zbl 0897.93023 · doi:10.1016/0005-1098(96)00063-5
[41] Kwon, W. H.; Lee, Y. S.; Han, S. H., General receding horizon control for linear time-delay systems, Automatica, 40, 9, 1603-1611 (2004) · Zbl 1055.93032 · doi:10.1016/j.automatica.2004.04.003
[42] Li, J.; Fang, Y.; Shi, S., Robust MPC algorithm for discrete-time systems with time-varying delay and nonlinear perturbations, Proceedings of the 29th Chinese Control Conference
[43] Liu, Y.; Zhang, G. S., Delay-dependent robust model predictive control for constrained LPV systems, Proceedings of the 32nd Chinese Control Conference
[44] Lombardi, W.; Olaru, S.; Niculescu, S. I.; Hetel, L., A predictive control scheme for systems with variable time-delay, International Journal of Control, 85, 7, 915-932 (2012) · Zbl 1282.93097 · doi:10.1080/00207179.2012.669847
[45] Shi, Y. J.; Chai, T. Y.; Wang, H.; Su, C. Y., Delay-dependent robust model predictive control for time-delay systems with input constraints, 2009 American Control Conference · doi:10.1109/ACC.2009.5160120
[46] Su, C. L.; Wang, S. Q., Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model, Journal of Zhejiang University-Science A, 7, 10, 1723-1732 (2006) · Zbl 1106.93037 · doi:10.1631/jzus.2006.A1723
[47] Wang, L.; Mo, S.; Zhou, D.; Gao, F.; Chen, X., Delay-range-dependent method for iterative learning fault-tolerant guaranteed cost control for batch processes, Industrial & Engineering Chemistry Research, 52, 7, 2661-2671 (2013) · doi:10.1021/ie3030196
[48] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, Philadelphia, PA, USA · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[49] Qiu, J.; Xia, Y.; Yang, H.; Zhang, J., Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators, IET Control Theory & Applications, 2, 1, 87-93 (2008) · doi:10.1049/iet-cta:20070070
[50] Yu, K. W.; Lien, C. H., Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos, Solitons & Fractals, 38, 3, 650-657 (2008) · Zbl 1146.93366 · doi:10.1016/j.chaos.2007.01.002
[51] Li, H.; Chen, B.; Zhou, Q.; Lin, C., A delay-dependent approach to robust \(H_∞\) control for uncertain stochastic systems with state and input delays, Circuits, Systems & Signal Processing, 28, 1, 169-183 (2009) · Zbl 1163.93017 · doi:10.1007/s00034-008-9075-2
[52] Li, H.; Zhou, Q.; Chen, B.; Liu, H., Parameter-dependent robust stability for uncertain Markovian jump systems with time delay, Journal of the Franklin Institute, 348, 4, 738-748 (2011) · Zbl 1227.93126 · doi:10.1016/j.jfranklin.2011.02.002
[53] Liu, T.; Gao, F., Robust two-dimensional iterative learning control for batch processes with state delay and time-varying uncertainties, Chemical Engineering Science, 65, 23, 6134-6144 (2010) · doi:10.1016/j.ces.2010.08.031
[54] Zhou, D. H.; He, X.; Wang, Z.; Liu, G. P.; Ji, Y. D., Leakage fault diagnosis for an internet-based three-tank system: an experimental study, IEEE Transactions on Control Systems Technology, 20, 4, 857-870 (2012) · doi:10.1109/TCST.2011.2154383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.