×

Wave dispersion of nanobeams incorporating stretching effect. (English) Zbl 1496.74075


MSC:

74J05 Linear waves in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Arash, B.; Ansari, R., Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain, Physica E Low Dimens Syst Nanostruct, 42, 2058-2064 (2010) · doi:10.1016/j.physe.2010.03.028
[2] Ghavanloo, E.; Fazelzadeh, SA., Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics, Nanotechnology, 24, 075702 (2013) · doi:10.1088/0957-4484/24/7/075702
[3] Lin, Q-Y; Jing, G.; Zhou, Y-B, Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition, ACS Nano, 7, 1171-1177 (2013) · doi:10.1021/nn3053999
[4] Eringen, AC; Edelen, D., On nonlocal elasticity, Int J Eng Sci, 10, 233-248 (1972) · Zbl 0247.73005 · doi:10.1016/0020-7225(72)90039-0
[5] Lam, DC; Yang, F.; Chong, A., Experiments and theory in strain gradient elasticity, J Mech Phys Solids, 51, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[6] Bounouara, F.; Benrahou, KH; Belkorissat, I., A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation, Steel Compos Struct, 20, 227-249 (2016) · doi:10.12989/scs.2016.20.2.227
[7] Belkorissat, I.; Houari, MSA; Tounsi, A., On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel Compos Struct, 18, 1063-1081 (2015) · doi:10.12989/scs.2015.18.4.1063
[8] Ebrahimi, F.; Salari, E., Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions, Smart Struct Syst, 19, 243-257 (2017) · doi:10.12989/sss.2017.19.3.243
[9] Shahsavari, D.; Karami, B.; Janghorban, M., Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment, Mater Res Express, 4, 085013 (2017) · doi:10.1088/2053-1591/aa7d89
[10] Karami, B.; Janghorban, M.; Li, L., On guided wave propagation in fully clamped porous functionally graded nanoplates, Acta Astronaut, 143, 380-390 (2018) · doi:10.1016/j.actaastro.2017.12.011
[11] Karami, B.; Janghorban, M., Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory, Mod Phys Lett B, 30, 1650421 (2016) · doi:10.1142/S0217984916504212
[12] Karami, B.; Shahsavari, D.; Li, L., Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory, Proc Inst Mech Eng Pt C J Mechan Eng Sci, 233, 287-301 (2019) · doi:10.1177/0954406218756451
[13] Karami, B.; Shahsavari, D.; Janghorban, M., A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates, Aerosp Sci Technol, 82, 499-512 (2018) · doi:10.1016/j.ast.2018.10.001
[14] Yazid, M.; Heireche, H.; Tounsi, A., A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium, Smart Struct Syst, 21, 15-25 (2018)
[15] Zemri, A.; Houari, MSA; Bousahla, AA, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory, Struct Eng Mech, 54, 693-710 (2015) · doi:10.12989/sem.2015.54.4.693
[16] Bouadi, A.; Bousahla, AA; Houari, MSA, A new nonlocal HSDT for analysis of stability of single layer graphene sheet, Adv Nano Res, 6, 147-162 (2018)
[17] Hamza-Cherif, R.; Meradjah, M.; Zidour, M., Vibration analysis of nano beam using differential transform method including thermal effect, J Nano Res, 54, 1-14 (2018)
[18] Mokhtar, Y.; Heireche, H.; Bousahla, AA, A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory, Smart Struct Syst, 21, 397-405 (2018)
[19] Kadari, B.; Bessaim, A.; Tounsi, A., Buckling analysis of orthotropic nanoscale plates resting on elastic foundations, J Nano Res, 55, 42-56 (2018)
[20] Khetir, H.; Bouiadjra, MB; Houari, MSA, A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates, Struct Eng Mech, 64, 391-402 (2017)
[21] Bakhadda, B.; Bouiadjra, MB; Bourada, F., Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation, Wind Struct, 27, 311-324 (2018)
[22] Sobhy, M., Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory, Struct Eng Mech, 63, 401-415 (2017)
[23] Pradhan, S.; Phadikar, J., Nonlocal elasticity theory for vibration of nanoplates, J Sound Vib, 325, 206-223 (2009) · doi:10.1016/j.jsv.2009.03.007
[24] Askes, H.; Aifantis, EC., Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys Rev B, 80, 195412 (2009) · doi:10.1103/PhysRevB.80.195412
[25] Lim, C.; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J Mech Phys Solids, 78, 298-313 (2015) · Zbl 1349.74016 · doi:10.1016/j.jmps.2015.02.001
[26] Li, L.; Hu, Y.; Ling, L., Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Compos Struct, 133, 1079-1092 (2015) · doi:10.1016/j.compstruct.2015.08.014
[27] Nami, MR; Janghorban, M., Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant, Compos Struct, 111, 349-353 (2014) · doi:10.1016/j.compstruct.2014.01.012
[28] Zhu, X.; Li, L., Closed form solution for a nonlocal strain gradient rod in tension, Int J Eng Sci, 119, 16-28 (2017) · Zbl 1423.74334 · doi:10.1016/j.ijengsci.2017.06.019
[29] Karami, B.; Janghorban, M.; Tounsi, A., Effects of triaxial magnetic field on the anisotropic nanoplates, Steel Compos Struct, 25, 361-374 (2017)
[30] Shahsavari, D.; Karami, B.; Mansouri, S., Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Eur J Mech A Solids, 67, 200-214 (2018) · Zbl 1406.74258 · doi:10.1016/j.euromechsol.2017.09.004
[31] Li, L.; Li, X.; Hu, Y., Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, Int J Eng Sci, 102, 77-92 (2016) · Zbl 1423.74399 · doi:10.1016/j.ijengsci.2016.02.010
[32] Li, L.; Hu, Y., Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, Int J Eng Sci, 97, 84-94 (2015) · Zbl 1423.74495 · doi:10.1016/j.ijengsci.2015.08.013
[33] Li, L.; Hu, Y., Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects, Int J Mech Sci, 120, 159-170 (2017) · doi:10.1016/j.ijmecsci.2016.11.025
[34] Karami, B.; Janghorban, M.; Tounsi, A., Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions, Eng Comput (2018) · doi:10.1007/s00366-018-0664-9
[35] She, G-L; Yuan, F-G; Karami, B., On nonlinear bending behavior of FG porous curved nanotubes, Int J Eng Sci, 135, 58-74 (2019) · Zbl 1423.74352 · doi:10.1016/j.ijengsci.2018.11.005
[36] She, G-L; Yuan, F-G; Ren, Y-R, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Compos Struct, 203, 614-623 (2018) · doi:10.1016/j.compstruct.2018.07.063
[37] Farajpour, A.; Yazdi, MH; Rastgoo, A., A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mech, 227, 1849-1867 (2016) · Zbl 1344.74043 · doi:10.1007/s00707-016-1605-6
[38] Sahmani, S.; Aghdam, M., Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory, Int J Mech Sci, 131, 95-106 (2017) · doi:10.1016/j.ijmecsci.2017.06.052
[39] She, G-L; Yuan, F-G; Ren, Y-R, On buckling and postbuckling behavior of nanotubes, Int J Eng Sci, 121, 130-142 (2017) · Zbl 1423.74353 · doi:10.1016/j.ijengsci.2017.09.005
[40] Karami, B.; Karami, S., Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials, Adv Nano Res, 7, 51-61 (2019)
[41] She, G-L; Ren, Y-R; Xiao, W-S, Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations, Struct Eng Mech, 66, 729-736 (2018)
[42] Zhu, X.; Li, L., Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity, Int J Mech Sci, 133, 639-650 (2017) · doi:10.1016/j.ijmecsci.2017.09.030
[43] Sahmani, S.; Aghdam, M., Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams, Compos Struct, 179, 77-88 (2017) · doi:10.1016/j.compstruct.2017.07.064
[44] Shafiei, N.; She, G-L., On vibration of functionally graded nano-tubes in the thermal environment, Int J Eng Sci, 133, 84-98 (2018) · Zbl 1423.74407 · doi:10.1016/j.ijengsci.2018.08.004
[45] Karami, B.; Janghorban, M.; Tounsi, A., Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles, Steel Compos Struct, 27, 201-216 (2018)
[46] Karami, B.; Janghorban, M., On the dynamics of porous nanotubes with variable material properties and variable thickness, Int J Eng Sci, 136, 53-66 (2019) · Zbl 1423.82051 · doi:10.1016/j.ijengsci.2019.01.002
[47] Farajpour, A.; Ghayesh, MH; Farokhi, H., Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes, Int J Mech Sci, 150, 510-525 (2018) · doi:10.1016/j.ijmecsci.2018.09.043
[48] Li, L.; Hu, Y.; Li, X., Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, Int J Mech Sci, 115, 135-144 (2016) · doi:10.1016/j.ijmecsci.2016.06.011
[49] Li, L.; Hu, Y., Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory, Comput Mater Sci, 112, 282-288 (2016) · doi:10.1016/j.commatsci.2015.10.044
[50] Karami, B.; Janghorban, M.; Tounsi, A., Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory, Thin-Walled Struct, 129, 251-264 (2018) · doi:10.1016/j.tws.2018.02.025
[51] Karami, B.; Shahsavari, D.; Janghorban, M., Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory, Mech Adv Mater Struct, 25, 1047-1057 (2018) · doi:10.1080/15376494.2017.1323143
[52] Karami, B.; Shahsavari, D.; Li, L., Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field, J Therm Stresses, 41, 483-499 (2018) · doi:10.1080/01495739.2017.1393781
[53] Karami, B.; Shahsavari, D.; Karami, M., Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field, Proc Inst Mech Eng Pt C J Mechan Eng Sci, 233, 2149-2169 (2019) · doi:10.1177/0954406218781680
[54] Shahsavari, D.; Karami, B.; Li, L., A high-order gradient model for wave propagation analysis of porous FG nanoplates, Steel Compos Struct, 29, 53-66 (2018)
[55] She, G-L; Yan, K-M; Zhang, Y-L, Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory, Eur Phys J Plus, 133, 368 (2018) · doi:10.1140/epjp/i2018-12196-5
[56] Karami, B.; janghorban, M.; Tounsi, A., On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model, Struct Eng Mech, 69, 487-497 (2019)
[57] Barati, MR; Zenkour, A., A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate, Compos Struct, 168, 885-892 (2017) · doi:10.1016/j.compstruct.2017.02.090
[58] Xiao, W.; Li, L.; Wang, M., Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory, Appl Phys A, 123, 388 (2017) · doi:10.1007/s00339-017-1007-1
[59] Karami, B.; Shahsavari, D.; Li, L., Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory, Physica E Low Dimens Syst Nanostruct, 97, 317-327 (2018) · doi:10.1016/j.physe.2017.11.020
[60] Shahsavari, D.; Karami, B.; Li, L., Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model, Comptes Rendus Mécanique, 346, 1216-1232 (2018) · doi:10.1016/j.crme.2018.08.011
[61] Karami, B.; Shahsavari, D.; Janghorban, M., Wave dispersion of mounted graphene with initial stress, Thin-Walled Struct, 122, 102-111 (2018) · doi:10.1016/j.tws.2017.10.004
[62] Ghayesh, MH., Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity, Int J Mech Sci, 140, 339-350 (2018) · doi:10.1016/j.ijmecsci.2018.02.037
[63] Ghayesh, MH., Dynamics of functionally graded viscoelastic microbeams, Int J Eng Sci, 124, 115-131 (2018) · Zbl 1423.74186 · doi:10.1016/j.ijengsci.2017.11.004
[64] Ghayesh, MH; Amabili, M.; Farokhi, H., Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams, Int J Eng Sci, 71, 1-14 (2013) · Zbl 1423.74479 · doi:10.1016/j.ijengsci.2013.04.003
[65] Farokhi, H.; Ghayesh, MH; Amabili, M., Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory, Int J Eng Sci, 68, 11-23 (2013) · Zbl 1423.74473 · doi:10.1016/j.ijengsci.2013.03.001
[66] Ghayesh, MH; Farokhi, H., Nonlinear dynamics of microplates, Int J Eng Sci, 86, 60-73 (2015) · Zbl 1423.74543 · doi:10.1016/j.ijengsci.2014.10.004
[67] Farokhi, H.; Ghayesh, MH., Size-dependent parametric dynamics of imperfect microbeams, Int J Eng Sci, 99, 39-55 (2016) · Zbl 1423.74472 · doi:10.1016/j.ijengsci.2015.10.014
[68] Wang, K.; Kitamura, T.; Wang, B., Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy – a modified couple stress theory model, Int J Mech Sci, 99, 288-296 (2015) · doi:10.1016/j.ijmecsci.2015.05.006
[69] Ghugal, Y.; Shimpi, R., A review of refined shear deformation theories for isotropic and anisotropic laminated beams, J Reinf Plast Compos, 20, 255-272 (2001) · doi:10.1177/073168401772678283
[70] Bellifa, H.; Benrahou, KH; Bousahla, AA, A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams, Struct Eng Mech, 62, 695-702 (2017)
[71] Ebrahimi, F.; Barati, MR., Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory, Struct Eng Mech, 61, 721-736 (2017) · doi:10.12989/sem.2017.61.6.721
[72] Karami, B.; Shahsavari, D.; Nazemosadat, SMR, Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation, Steel and Composite Structures, 29, 349-362 (2018)
[73] Ebrahimi, F.; Daman, M., Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment, Struct Eng Mech, 64, 121-133 (2017)
[74] Karami, B.; shahsavari, D.; janghorban, M., Influence of homogenization schemes on vibration of functionally graded curved microbeams, Compos Struct, 216, 67-79 (2019) · doi:10.1016/j.compstruct.2019.02.089
[75] Ghayesh, MH; Farokhi, H.; Gholipour, A., Oscillations of functionally graded microbeams, Int J Eng Sci, 110, 35-53 (2017) · Zbl 1423.74483 · doi:10.1016/j.ijengsci.2016.09.011
[76] Ghayesh, MH; Farokhi, H.; Gholipour, A., Resonance responses of geometrically imperfect functionally graded extensible microbeams, J Comput Nonlinear Dyn, 12, 051002 (2017) · doi:10.1115/1.4035214
[77] Ghayesh, MH; Farokhi, H.; Gholipour, A., Nonlinear oscillations of functionally graded microplates, Int J Eng Sci, 122, 56-72 (2018) · doi:10.1016/j.ijengsci.2017.03.014
[78] Ghayesh, MH; Farokhi, H.; Gholipour, A., Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams, Int J Eng Sci, 120, 51-62 (2017) · Zbl 1423.74393 · doi:10.1016/j.ijengsci.2017.03.010
[79] Gholipour, A.; Farokhi, H.; Ghayesh, MH., In-plane and out-of-plane nonlinear size-dependent dynamics of microplates, Nonlinear Dyn, 79, 1771-1785 (2015) · doi:10.1007/s11071-014-1773-7
[80] Farokhi, H.; Ghayesh, MH., Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory, Int J Mech Sci, 90, 133-144 (2015) · doi:10.1016/j.ijmecsci.2014.11.002
[81] Chikh, A.; Tounsi, A.; Hebali, H., Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT, Smart Struct Syst, 19, 289-297 (2017) · doi:10.12989/sss.2017.19.3.289
[82] Menasria, A.; Bouhadra, A.; Tounsi, A., A new and simple HSDT for thermal stability analysis of FG sandwich plates, Steel Compos Struct, 25, 157-175 (2017)
[83] Bouderba, B.; Houari, MSA; Tounsi, A., Thermal stability of functionally graded sandwich plates using a simple shear deformation theory, Struct Eng Mech, 58, 397-422 (2016) · doi:10.12989/sem.2016.58.3.397
[84] Shimpi, R.; Patel, H., Free vibrations of plate using two variable refined plate theory, J Sound Vib, 296, 979-999 (2006) · doi:10.1016/j.jsv.2006.03.030
[85] Fourn, H.; Atmane, HA; Bourada, M., A novel four variable refined plate theory for wave propagation in functionally graded material plates, Steel Compos Struct, 27, 109-122 (2018)
[86] Yahia, SA; Atmane, HA; Houari, MSA, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories, Struct Eng Mech, 53, 1143-1165 (2015) · doi:10.12989/sem.2015.53.6.1143
[87] Beldjelili, Y.; Tounsi, A.; Mahmoud, S., Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory, Smart Struct Syst, 18, 755-786 (2016) · doi:10.12989/sss.2016.18.4.755
[88] El-Haina, F.; Bakora, A.; Bousahla, AA, A simple analytical approach for thermal buckling of thick functionally graded sandwich plates, Struct Eng Mech, 63, 585-595 (2017)
[89] Attia, A.; Bousahla, AA; Tounsi, A., A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations, Struct Eng Mech, 65, 453-464 (2018)
[90] Bousahla, AA; Benyoucef, S.; Tounsi, A., On thermal stability of plates with functionally graded coefficient of thermal expansion, Struct Eng Mech, 60, 313-335 (2016) · doi:10.12989/sem.2016.60.2.313
[91] Ebrahimi, F.; Barati, MR; Dabbagh, A., A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, Int J Eng Sci, 107, 169-182 (2016) · doi:10.1016/j.ijengsci.2016.07.008
[92] Carrera, E.; Brischetto, S.; Cinefra, M., Effects of thickness stretching in functionally graded plates and shells, Compos B Eng, 42, 123-133 (2011) · doi:10.1016/j.compositesb.2010.10.005
[93] Thai, H-T; Kim, S-E., A review of theories for the modeling and analysis of functionally graded plates and shells, Compos Struct, 128, 70-86 (2015) · doi:10.1016/j.compstruct.2015.03.010
[94] Shahsavari, D.; Karami, B.; Fahham, HR, On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory, Acta Mech, 229, 4549-4573 (2018) · doi:10.1007/s00707-018-2247-7
[95] Karami, B.; Janghorban, M.; Shahsavari, D., A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates, Steel Compos Struct, 28, 99-110 (2018)
[96] Younsi, A.; Tounsi, A.; Zaoui, FZ, Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates, Geomech Eng, 14, 519-532 (2018)
[97] Bennoun, M.; Houari, MSA; Tounsi, A., A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates, Mech Adv Mater Struct, 23, 423-431 (2016) · doi:10.1080/15376494.2014.984088
[98] Abualnour, M.; Houari, MSA; Tounsi, A., A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates, Compos Struct, 184, 688-697 (2018) · doi:10.1016/j.compstruct.2017.10.047
[99] Karami, B.; Shahsavari, D.; Janghorban, M., Wave propagation of porous nanoshells, Nanomaterials, 9, 22 (2019) · doi:10.3390/nano9010022
[100] Bourada, M.; Kaci, A.; Houari, MSA, A new simple shear and normal deformations theory for functionally graded beams, Steel Compos Struct, 18, 409-423 (2015) · doi:10.12989/scs.2015.18.2.409
[101] Bouhadra, A.; Tounsi, A.; Bousahla, AA, Improved HSDT accounting for effect of thickness stretching in advanced composite plates, Struct Eng Mech, 66, 61-73 (2018)
[102] Draiche, K.; Tounsi, A.; Mahmoud, S., A refined theory with stretching effect for the flexure analysis of laminated composite plates, Geomech Eng, 11, 671-690 (2016) · doi:10.12989/gae.2016.11.5.671
[103] Thai, H-T; Kim, S-E., A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates, Compos Struct, 99, 172-180 (2013) · doi:10.1016/j.compstruct.2012.11.030
[104] Vo, TP; Thai, H-T; Nguyen, T-K, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Compos Struct, 119, 1-12 (2015) · doi:10.1016/j.compstruct.2014.08.006
[105] Shahsavari, D.; Shahsavari, M.; Li, L., A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation, Aerosp Sci Technol, 72, 134-149 (2018) · doi:10.1016/j.ast.2017.11.004
[106] Bouafia, K.; Kaci, A.; Houari, MSA, A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams, Smart Struct Syst, 19, 115-126 (2017) · doi:10.12989/sss.2017.19.2.115
[107] Chaht, FL; Kaci, A.; Houari, MSA, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect, Steel Compos Struct, 18, 425-442 (2015) · doi:10.12989/scs.2015.18.2.425
[108] Ebrahimi, F.; Barati, MR., Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Appl Phys A, 122, 843 (2016) · doi:10.1007/s00339-016-0368-1
[109] Atmane, HA; Tounsi, A.; Bernard, F., Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, Int J Mech Mater Des, 13, 71-84 (2017) · doi:10.1007/s10999-015-9318-x
[110] Allen, MJ; Tung, VC; Kaner, RB., Honeycomb carbon: a review of graphene, Chem Rev, 110, 132-145 (2009) · doi:10.1021/cr900070d
[111] Shen, L.; Shen, H-S; Zhang, C-L., Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput Mater Sci, 48, 680-685 (2010) · doi:10.1016/j.commatsci.2010.03.006
[112] Androulidakis, C.; Koukaras, EN; Frank, O., Failure processes in embedded monolayer graphene under axial compression, Sci Rep, 4, 5271 (2014) · doi:10.1038/srep05271
[113] Xiang, Y.; Shen, H-S., Compressive buckling of rippled graphene via molecular dynamics simulations, Int J Struct Stab Dyn, 16, 1550071 (2016) · doi:10.1142/S0219455415500716
[114] Wang, Y-Z; Li, F-M; Kishimoto, K., Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress, Appl Phys A Mater Sci Process, 99, 907-911 (2010) · doi:10.1007/s00339-010-5666-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.