×

Locked fronts in a discrete time discrete space population model. (English) Zbl 1506.39015

Summary: A model of population growth and dispersal is considered where the spatial habitat is a lattice and reproduction occurs generationally. The resulting discrete dynamical system exhibits velocity locking, where rational speed invasion fronts are observed to persist as parameters are varied. In this article, we construct locked fronts for a particular piecewise linear reproduction function. These fronts are shown to be linear combinations of exponentially decaying solutions to the linear system near the unstable state. Based upon these front solutions, we then derive expressions for the boundary of locking regions in parameter space. We obtain leading order expansions for the locking regions in the limit as the migration parameter tends to zero. Strict spectral stability in exponentially weighted spaces is also established.

MSC:

39A60 Applications of difference equations
37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
92D25 Population dynamics (general)
92D40 Ecology

References:

[1] Anderson, T.; Faye, G.; Scheel, A.; Stauffer, D., Pinning and unpinning in nonlocal systems, J Dyn Differ Equ, 28, 3-4, 897-923 (2016) · Zbl 1356.45008 · doi:10.1007/s10884-016-9518-6
[2] Arnol’d, VI, Small denominators I. Mapping the circle onto itself, Izv Akad Nauk SSSR Ser Mat, 25, 21-86 (1961) · Zbl 0135.42603
[3] Bates, PW; Fife, PC; Ren, X.; Wang, X., Traveling waves in a convolution model for phase transitions, Arch Ration Mech Anal, 138, 2, 105-136 (1997) · Zbl 0889.45012 · doi:10.1007/s002050050037
[4] Bell, J.; Cosner, C., Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Q Appl Math, 42, 1, 1-14 (1984) · Zbl 0536.34050 · doi:10.1090/qam/736501
[5] Berestycki H, Bouhours J, Chapuisat G (2016) Front blocking and propagation in cylinders with varying cross section. Calc Var Partial Differ Equ 55(3):Art. 44, 32 · Zbl 1348.35105
[6] Browne, C.; Dickerson, AL, Coherent structures in scalar feed-forward chains, SIURO, 7, 306-329 (2014) · doi:10.1137/14S013263
[7] Carpio, A.; Bonilla, LL, Depinning transitions in discrete reaction-diffusion equations, SIAM J Appl Math, 63, 3, 1056-1082 (2003) · Zbl 1035.34058 · doi:10.1137/S003613990239006X
[8] Carretero-González, R.; Arrowsmith, DK; Vivaldi, F., One-dimensional dynamics for traveling fronts in coupled map lattices, Phys Rev E, 61, 1329-1336 (2000) · doi:10.1103/PhysRevE.61.1329
[9] Chow, S-N; Shen, WX, Stability and bifurcation of traveling wave solutions in coupled map lattices, Dyn Syst Appl, 4, 1, 1-25 (1995) · Zbl 0821.34046
[10] Chow, S-N; Mallet-Paret, J.; Shen, W., Traveling waves in lattice dynamical systems, J Differ Equ, 149, 2, 248-291 (1998) · Zbl 0911.34050 · doi:10.1006/jdeq.1998.3478
[11] Dirr, N.; Yip, NK, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces Free Bound, 8, 1, 79-109 (2006) · Zbl 1101.35074 · doi:10.4171/IFB/136
[12] Fernandez, B.; Raymond, L., Propagating fronts in a bistable coupled map lattice, J Stat Phys, 86, 1-2, 337-350 (1997) · Zbl 0937.82030 · doi:10.1007/BF02180209
[13] Fáth, G., Propagation failure of traveling waves in a discrete bistable medium, Physica D Nonlinear Phenomena, 116, 1, 176-190 (1998) · Zbl 0935.35070 · doi:10.1016/S0167-2789(97)00251-0
[14] Hoffman, A.; Mallet-Paret, J., Universality of crystallographic pinning, J Dyn Differ Equ, 22, 2, 79-119 (2010) · Zbl 1216.34009 · doi:10.1007/s10884-010-9157-2
[15] Kaneko, K., Lyapunov analysis and information flow in coupled map lattices, Physica D Nonlinear Phenomena, 23, 1, 436-447 (1986) · doi:10.1016/0167-2789(86)90149-1
[16] Keener, JP, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J Appl Math, 47, 3, 556-572 (1987) · Zbl 0649.34019 · doi:10.1137/0147038
[17] Lewis, M.; Grindrod, P., One-way blocks in cardiac tissue: a mechanism for propagation failure in purkinje fibres, Bull Math Biol, 53, 6, 881-899 (1991) · Zbl 0735.92011 · doi:10.1016/S0092-8240(05)80412-4
[18] Lewis, TJ; Keener, JP, Wave-block in excitable media due to regions of depressed excitability, SIAM J Appl Math, 61, 1, 293-316 (2000) · Zbl 0967.35067 · doi:10.1137/S0036139998349298
[19] Turzík, D.; Dubcová, M., Stability of steady state and traveling waves solutions in coupled map lattices, Int J Bifurc Chaos Appl Sci Eng, 18, 1, 219-225 (2008) · Zbl 1143.37331 · doi:10.1142/S0218127408020240
[20] van Saarloos, W., Front propagation into unstable states, Phys Rep, 386, 2-6, 29-222 (2003) · Zbl 1042.74029 · doi:10.1016/j.physrep.2003.08.001
[21] Wang, C-H; Matin, S.; George, AB; Korolev, KS, Pinned, locked, pushed, and pulled traveling waves in structured environments, Theor Popul Biol, 127, 102-119 (2019) · Zbl 1415.92214 · doi:10.1016/j.tpb.2019.04.003
[22] Weinberger, HF, Long-time behavior of a class of biological models, SIAM J Math Anal, 13, 3, 353-396 (1982) · Zbl 0529.92010 · doi:10.1137/0513028
[23] Xin, JX, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, J Stat Phys, 73, 5-6, 893-926 (1993) · Zbl 1102.35340 · doi:10.1007/BF01052815
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.