×

Traveling waves in a coarse-grained model of volume-filling cell invasion: simulations and comparisons. (English) Zbl 1533.92064

Summary: Many reaction-diffusion models produce traveling wave solutions that can be interpreted as waves of invasion in biological scenarios such as wound healing or tumor growth. These partial differential equation models have since been adapted to describe the interactions between cells and extracellular matrix (ECM), using a variety of different underlying assumptions. In this work, we derive a system of reaction-diffusion equations, with cross-species density-dependent diffusion, by coarse-graining an agent-based, volume-filling model of cell invasion into ECM. We study the resulting traveling wave solutions both numerically and analytically across various parameter regimes. Subsequently, we perform a systematic comparison between the behaviors observed in this model and those predicted by simpler models in the literature that do not take into account volume-filling effects in the same way. Our study justifies the use of some of these simpler, more analytically tractable models in reproducing the qualitative properties of the solutions in some parameter regimes, but it also reveals some interesting properties arising from the introduction of cell and ECM volume-filling effects, where standard model simplifications might not be appropriate.
© 2023 The Authors. Studies in Applied Mathematics published by Wiley Periodicals LLC.

MSC:

92C37 Cell biology
35K57 Reaction-diffusion equations
35C07 Traveling wave solutions

References:

[1] GiniūnaitėR, BakerRE, KulesaPM, MainiPK. Modelling collective cell migration: neural crest as a model paradigm. J Math Biol. 2020;80:481‐504. · Zbl 1432.92016
[2] JohnstonST, BakerRE, McElwainDL, SimpsonMJ.Co‐operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp‐fronted traveling waves. Sci Rep. 2017;7(1):1‐19.
[3] DallonJC, SherrattJA, MainiPK. Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration. J Theor Biol. 1999;199(4):449‐471
[4] PerumpananiAJ, ByrneHM.Extracellular matrix concentration exerts selection pressure on invasive cells. Eur J Cancer. 1999;35(8):1274‐1280.
[5] PainterKJ, SherrattJA.Modelling the movement of interacting cell populations. J Theor Biol. 2003;225(3):327‐339. · Zbl 1464.92050
[6] FisherRA.The wave of advance of advantageous genes. Ann Eugen. 1937;7(4):355‐369. · JFM 63.1111.04
[7] KolmogorovAN, PetrovskiiI, PiskunovNS.A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Moscow Univ Biol Sci Bull. 1937;1(6):1‐25.
[8] MainiPK, McElwainDLS, LeavesleyDI.Traveling wave model to interpret a wound‐healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 2004;10(3‐4):475‐482.
[9] GerleeP, NelanderS.Travelling wave analysis of a mathematical model of glioblastoma growth. Math Biosci. 2016;276:75‐81. · Zbl 1343.92221
[10] OkuboA, MainiPK, WilliamsonMH, MurrayJD.On the spatial spread of the grey squirrel in Britain. Proc R S London. B. Biol Sci. 1989;238(1291):113‐125.
[11] KotM. Elements of Mathematical Ecology. Cambridge University Press; 2001.
[12] CanosaJ.On a nonlinear diffusion equation describing population growth. IBM J Res Dev. 1973;17(4):307‐313. · Zbl 0266.65080
[13] MurrayJD. Mathematical Biology I: An Introduction. Springer; 2002. · Zbl 1006.92001
[14] El‐HachemM, McCueSW, SimpsonMJ.Travelling wave analysis of cellular invasion into surrounding tissues. Physica D. 2021;428:133026. · Zbl 1482.92034
[15] ColsonC, Sánchez‐GarduñoF, ByrneHM, MainiPK, LorenziT.Travelling‐wave analysis of a model of tumour invasion with degenerate, cross‐dependent diffusion. Proc R Soc A. 2021;477(2256):20210593.
[16] GurtinME, MacCamyRC.On the diffusion of biological populations. Math Biosci. 1977;33(1‐2):35‐49. · Zbl 0362.92007
[17] SengersBG, PleaseCP, OreffoROC.Experimental characterization and computational modelling of two‐dimensional cell spreading for skeletal regeneration. J R Soc Interface. 2007;4(17):1107‐1117.
[18] MartinNK, GaffneyEA, GatenbyRA, MainiPK.Tumour-stromal interactions in acid‐mediated invasion: a mathematical model. J Theor Biol. 2010;267(3):461‐470. · Zbl 1410.92036
[19] McGillenJB, GaffneyEA, MartinNK, MainiPK.A general reaction-diffusion model of acidity in cancer invasion. J Math Biol. 2014;68(5):1199‐1224. · Zbl 1288.35186
[20] SimpsonMJ, HughesBD, LandmanKA. Diffusing populations: ghosts or folks?Australas J Eng Educ. 2009;15(2):59‐68.
[21] SimpsonMJ, LandmanKA, HughesBD.Multi‐species simple exclusion processes. Physica A. 2009;388(4):399‐406.
[22] AndersonARA, RejniakKA, GerleeP, QuarantaV.Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol. 2009;58:579‐624. · Zbl 1311.92079
[23] KimY, OthmerHG.Hybrid models of cell and tissue dynamics in tumor growth. Math Biosci Eng. 2015;12(6):1141. · Zbl 1326.92015
[24] TamA, GreenJEF, BalasuriyaS, et al. Nutrient‐limited growth with non‐linear cell diffusion as a mechanism for floral pattern formation in yeast biofilms. J Theor Biol. 2018;448:122‐141. · Zbl 1397.92443
[25] BrunaM, ChapmanJS.Diffusion of multiple species with excluded‐volume effects. J Chem Phys. 2012;137(20):204116.
[26] MorrisB, CurtinL, Hawkins‐DaarudA, et al. Identifying the spatial and temporal dynamics of molecularly‐distinct glioblastoma sub‐populations. Math Biosci Eng. 2020;17(5):4905. · Zbl 1470.92079
[27] PainterKJ, HillenT.Volume‐filling and quorum‐sensing in models for chemosensitive movement. Can Appl Math Q. 2002;10(4):501‐543. · Zbl 1057.92013
[28] TaylorPR, BakerRE, SimpsonMJ, YatesCA.Coupling volume‐excluding compartment‐based models of diffusion at different scales: Voronoi and pseudo‐compartment approaches. J R Soc Interface. 2016;13(120):20160336.
[29] PeningtonCJ, HughesBD, LandmanKA.Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys Rev E. 2011;84(4):041120.
[30] CurtinL, Hawkins‐DaarudA, Van Der ZeeKG, SwansonKR, OwenMR.Speed switch in glioblastoma growth rate due to enhanced hypoxia‐induced migration. Bull Math Biol. 2020;82(3):43. · Zbl 1435.92014
[31] MurrayJD. Mathematical Biology II: Spatial Models and Biomedical Applications. Vol. 3. SpringerNew York; 2001.
[32] LamK‐Y, LouY. Introduction to Reaction‐Diffusion Equations: Theory and Applications to Spatial Ecology and Evolutionary Biology. Springer; 2022. · Zbl 1521.35001
[33] AntonH, BivensI, DavisS. Calculus: Multivariable version. Von Hoffmann Press; 2001.
[34] WigginsS, GolubitskyM. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, Vol. 2. Springer; 2003. · Zbl 1027.37002
[35] BrowningAP, HaridasP, SimpsonMJ.A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin. Bull Math Biol. 2019;81(3):676‐698. · Zbl 1415.92032
[36] BirzuG, HallatschekO, KorolevKS.Fluctuations uncover a distinct class of traveling waves. Proc Natl Acad Sci. 2018;115(16):E3645‐E3654. · Zbl 1416.35140
[37] WangC‐H, MatinS, GeorgeAB, KorolevKS.Pinned, locked, pushed, and pulled traveling waves in structured environments. Theor Popul Biol. 2019;127:102‐119. · Zbl 1415.92214
[38] PerumpananiAJ, SimmonsDL, GearingAJH, et al. Extracellular matrix‐mediated chemotaxis can impede cell migration. Proc R Soc B: Biol Sci. 1998;265(1413):2347.
[39] SimpsonMJ, LandmanKA, HughesBD.Pathlines in exclusion processes. Phys Rev E. 2009;79(3):031920.
[40] BowdenLG, SimpsonMJ, BakerRE.Design and interpretation of cell trajectory assays. J R Soc Interface. 2013;10(88):20130630.
[41] RossRJH, YatesCA, BakerRE.Inference of cell-cell interactions from population density characteristics and cell trajectories on static and growing domains. Math Biosci. 2015;264:108‐118. · Zbl 1371.92046
[42] MalikAA, WennbergB, GerleeP.The impact of elastic deformations of the extracellular matrix on cell migration. Bull Math Biol. 2020;82:1‐19. · Zbl 1437.92019
[43] StroblMAR, KrauseAL, DamaghiM, GilliesR, AndersonARA, MainiPK. Mix and match: phenotypic coexistence as a key facilitator of cancer invasion. Bull Math Biol. 2020;82(1):15. · Zbl 1432.92031
[44] MortonKW, MayersDF. Numerical Solution of Partial Differential Equations: An Introduction. 2nd ed. Cambridge University Press; 2005. · Zbl 1126.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.