×

Bifurcation, chaos and its control in a fractional order power system model with uncertainties. (English) Zbl 1422.93092

Summary: The paper investigates the complex nonlinear behavior of a fractional order four dimension power system (FOFDPS). The discrete mathematical model of the FOFDPS is derived and presented. The equilibrium points along with the Eigen values of commensurate and incommensurate FOFDPS are presented. The existence of chaotic oscillations are supported by a positive Lyapunov exponent. Bifurcation plots are derived for both parameters and fractional orders to show the impact of the same on the dynamic behavior of FOFDPS. Having shown the existence of such complex behaviors in the FOFDPS, we present an adaptive fractional order sliding mode control (FOASMC) to suppress the chaotic oscillations. Numerical results are presented to support the theoretical results.

MSC:

93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
34H10 Chaos control for problems involving ordinary differential equations
93C41 Control/observation systems with incomplete information
93C40 Adaptive control/observation systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] Machowski, J., J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control, Wiley, New Jersey (2008).
[2] Li, Z., J. B. Park, Y. H. Joo, B. Zhang, and G. Chen, “ Bifurcations and chaos in a permanent‐magnet synchronous motor,” IEEE Trans. Circuit Syst. I: Theory Applicat., Vol. 49, pp. 383- 387 (2002).
[3] Jing, Z. J., C. Yu, and G. R. Chen, “ Complex dynamics in a permanent‐magnet synchronous motor model,” Chaos Solitons Fractals, Vol. 22, No. 4, pp. 831- 848 (2004). · Zbl 1129.70329
[4] Karthikeyan, A., K. Rajagopal, and D. Mathew, “ Fractional order nonlinear variable speed and current regulation in a permanent magnet synchronous generator wind turbine system,” Alexandria Eng, Journal, Vol. 57, No. 1, pp. 159- 167 (2018).
[5] Jabli, N., H. Khammari, M. F. Mimouni, and R. Dhifuoui, “ Bifurcation and chaos phenomena appearing in induction motor under variation of PI controller parameters,” WSEAS Trans. on Syst., Vol. 9, No. 7, pp. 784- 793 (2010). · Zbl 1231.93073
[6] Rajagopal, K., A. Karthikeyan, and P. Duraisamy, “ Chaos suppression in fractional order permanent magnet synchronous motor and PI controlled induction motor by extended back stepping control,” Nonlinear Eng, Vol. 5, No. 4, pp. 287- 292 (2016).
[7] Rajagopal, K., S. Vaidyanathan, A. Karthikeyan, and P. Duraisamy, “ Dynamic analysis and chaos suppression in a fractional order brushless DC motor,” Electrical Eng, Vol. 99, No. 2, pp. 721- 733 (2017).
[8] Rajagopal, K., and A. Karthikeyan, “ Chaos control in fractional order smart grid with adaptive sliding mode control and genetically optimized PID control with its FPGA implementation,” Complexity, Vol. 2017, Article ID 3815146, 18 pages (2017). https://doi.org/10.1155/2017/3815146. · Zbl 1367.93123
[9] Venkatasubramanian, V., and W. Ji, “ Coexistence of four different attractors in a fundamental power system model,” IEEE Trans. Circuits Syst. I: Fundamental Theory and Applicat., Vol. 46, No. 3, pp. 405- 409 (1999).
[10] Wang, H. O., E. H. Abed, and M. A. Hamdan, “ Bifurcations, chaos, and crises in voltage collapse of a model power system,” IEEE Trans. Circuits Syst.‐I: Fundamental Theory and Applicat., Vol. 41, No. 3, pp. 294- 302 (1994).
[11] Yixin, Y., J. Hongjie, L. Peng, and J. Su, “ Power system instability and chaos,” Electric Power Syst. Res., Vol. 65, No. 3, pp. 187- 195 (2003).
[12] Wang, R., and J. Huang, “ Effects of hard limits on bifurcation, chaos and stability,” Acta Mathematicae Applicatae Sinica, Vol. 20, No. 3, pp. 441- 456 (2004). · Zbl 1058.34061
[13] Gholizadeh, H., A. Hassannia, and A. Azarfar, “ Chaos detection and control in a typical power system,” Chin. Phys. B, Vol. 22, No. 1, (2013).
[14] Nduwayezu, E., and Y. Uyaroğlu, “ Electrical power system instability and chaos,” J. Electr. Eng., http://www.jee.ro/covers/art.php?issue=WV1423601157W54da6e05e5c0a, (2016).
[15] Ma, J., Y. Sun, X. Yuan, J. Kurths, and M. Zhan, “ Dynamics and collapse in a power system model with voltage variation: The damping effect,” PLoS ONE, Vol. 11, No. 11, pp. e0165943 (2016). https://doi.org/10.1371/journal.pone.0165943.
[16] Kopell, N., and R. Washburn, “ Chaotic motions in the two‐degree‐of‐freedom swing equations,” IEEE Trans. Circuits Syst., Vol. 29, No. 11, pp. 738- 746 (1982). · Zbl 0506.93029
[17] Zhao, H., Y. Ma, S. Liu, and S. Dan, “ Controlling chaos in power system based on finite‐time stability theory,” Chin. Phys. B, Vol. 20, No. 12, pp. 120501 (2011).
[18] Podlubny, I., “ Fractional differential equations,” In Math. in Sci. and Eng198, Academic Press, San Diego, CA (1999). · Zbl 0924.34008
[19] Hifer, R., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ (2001).
[20] Rajagopal, K., L. Guessas, A. Karthikeyan, A. K. Srinivasan, and G. Adam, “ Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization,” Complexity, Vol. 2017, Article ID 1892618, 19 pages (2017). https://doi.org/10.1155/2017/1892618. · Zbl 1367.93128
[21] Rajagopal, K., A. Karthikeyan, and A. K. Srinivasan, “ FPGA implementation of novel fractional‐order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization,” Nonlinear Dyn., Vol. 87, No. 4, pp. 2281- 2304 (2017).
[22] Rajagopal, K., L. Guessas, S. Vaidyanathan, A. Karthikeyan, and A. Srinivasan, “ Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using adaptive sliding mode control and genetically optimized PID control,” Math. Problems in Eng, Vol. 2017, Article ID 7307452, 14 pages (2017). https://doi.org/10.1155/2017/7307452. · Zbl 1422.93136
[23] Rajagopal, K., A. Karthikeyan, and P. Duraisamy, “ Hyperchaotic chameleon: Fractional order FPGA implementation,” Complexity, Vol. 2017, Article ID 8979408, 16 pages (2017). https://doi.org/10.1155/2017/8979408. · Zbl 1407.37052
[24] Baleanu, D., K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional calculus: Models and numerical methods5, World Scientific, Singapore (2016). · Zbl 1248.26011
[25] Lakshmikantham, V., and A. Vatsala, “ Basic theory of fractional differential equations,” Nonlinear Anal.: Theory, Methods Appl., Vol. 69, No. 8, pp. 2677- 2682 (2008). · Zbl 1161.34001
[26] Diethelm, K., The Analysis of Fractional Differential Equations: An Application‐Oriented Exposition Using Differential Operators of Caputo Type, Springer‐Verlag, Berlin, https://doi.org/10.1007/978‐3‐642‐14574‐2 (2010). · Zbl 1215.34001
[27] Diethelm, K. and A. D. Freed, “ The Frac PECE subroutine for the numerical solution of differential equations of fractional order,” in: Conference: orschung und wissenschaftliches Rechnen: Beiträge zum Heinz‐Billing‐Preis 1998, Gessellschaft fur Wissenschaftliche Datenverarbeitung, Gottingen, pp. 57‐ 71 (1999).
[28] Diethelm, K., N. J. Ford, and A. D. Freed, “ Detailed error analysis for a fractional Adams method,” Numer. Algorithms, Vol. 36, No. 1, pp. 31- 52 (2004). · Zbl 1055.65098
[29] Diethelm, K., “ An algorithm for the numerical solution of differential equations of fractional order,” Elect. Trans. Numerical Analysis, Vol. 5, pp. 1- 6 (1997). · Zbl 0890.65071
[30] Diethelm, K., and N. J. Ford, “ Analysis of fractional differential equations,” J. Math. Anal. Appl., Vol. 265, No. 2, pp. 229- 248 (2002). · Zbl 1014.34003
[31] Charef, A., H. H. Sun, and Y. Y. Tsao, “ Fractal system as represented by singularity function,” IEEE Trans. Autom. Control, Vol. 37, pp. 1465- 1470 (1992). · Zbl 0825.58027
[32] Adomian, G. A., “ Review of the decomposition method and some recent results for nonlinear equations,” Math. Comput. Model. Vol., Vol. 13, pp. 17- 43 (1990). · Zbl 0713.65051
[33] Sun, H. H., A. A. Abdelwahab, and B. Onaral, “ Linear approximation of transfer function with a pole of fractional power,” IEEE Trans. Autom. Control, Vol. 29, pp. 441- 444 (1984). · Zbl 0532.93025
[34] Tavazoei, M. S., and M. Haeri, “ Unreliability of frequency‐domain approximation in recognizing chaos in fractional‐order systems,” IET Sign. Proc., Vol. 1, pp. 171- 181 (2007).
[35] He, S. B., K. H. Sun, and H. H. Wang, “ Solving of fractional‐order chaotic system based on Adomian decomposition algorithm and its complexity analyses,” Acta Phys. Sin., Vol. 63, pp. 030502 (2014).
[36] Junkang, N., L. Liu, C. Liu, X. Hu, and A. Li, “ Chaos suppression for a four‐dimensional fundamental power system model using adaptive feedback control,” Trans. Inst. Meas. and Control, Vol. 39, No. 2, pp. 194- 207 (2015).
[37] Konishi, K., M. Hirai, and H. Kokame, “ Sliding mode control for a class of chaotic systems,” Phys. Lett. A, Vol. 245, pp. 511- 517 (1998).
[38] Utkin, V. I., “ Variable structure systems with sliding modes,” IEEE Trans. Autom. Control, Vol. 22, No. 2, pp. 212- 222 (1977). · Zbl 0382.93036
[39] DeCarlo, R. A., S. H. Zak, and G. Mathews, “ Variable structure control of nonlinear multivariable systems: A tutorial,” Proc. IEEE, Vol. 76, No. 3, Mar, (1988).
[40] Nazzal, J. M., and A. N. Natsheh, “ Chaos control using sliding mode theory,” Chaos Solutions Fractals, Vol. 33, pp. 695- 702 (2007).
[41] Abadi, A. S. A., and S. Balochian, “ Chaos control of the power system via sliding mode based on fuzzy supervisor,” Int. J. Intell. Comput. and Cybern., Vol. 10, No. 1, pp. 68- 79 (2017).
[42] Huang, C., J. Lin, T. Liao, C. Chen, and J. Yan, “ Quasi‐sliding mode control of chaos in permanent magnet synchronous motor,” Math. Probl. Eng, Vol. 2011, Article ID 964240, 10 pages (2011). https://doi.org/10.1155/2011/964240.
[43] Cheng, W., Y. Tong, and C. Li, “ Chaos control of permanent magnet synchronous motor via sliding mode variable structure scheme,” 3rd International Workshop on Intelligent Syst. and Applicat., Wuhan, pp. 1- 4 (2011).
[44] Levant, A., “ Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, Vol. 58, No. 6, pp. 1247- 1263 (1993). · Zbl 0789.93063
[45] Bartolini, G., A. Ferrara, A. Levant, and E. Usai, “ On second order sliding mode controller,” in Variable Structure Systems, Sliding Mode and Nonlinear Control, Vol. 247, Lecture Notes in Control and Information Sciences, K. D. Young and U. Özgüner, Eds. Springer‐Verlag, Berlin, Germany, 1999, pp. 329- 350. · Zbl 0940.93018
[46] Khalil, H. K., Nonlinear Systems, Pearson Education, New York (2002).
[47] Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, “ Determining Lyapunov exponents from a time series,” Physica D, Vol. 16, pp. 285- 317 (1985). · Zbl 0585.58037
[48] Danca, M., “ Lyapunov exponents of a class of piecewise continuous systems of fractional order,” Nonlinear Dyn., Vol. 81, No. 1-2, pp. 227- 237 (2015). · Zbl 1347.34088
[49] Song, B., S. Zheng, X. Tang, and W. Qiao, “ Fractional order modeling and nonlinear fractional order PI‐yype control for PMLSM system,” Asian J. Control, Vol. 19, pp. 521- 531 (2017). · Zbl 1365.93111
[50] Roy, P., B. Kar, and B. K. Roy, “ Fractional order PI‐PD control of liquid level in coupled two tank system and its experimental validation,” Asian J. Control, Vol. 19, pp. 1699- 1709 (2017). · Zbl 1386.93150
[51] Nangrani, S. P., and S. S. Bhat, “ Fractional order controller for controlling power system dynamic behavior,” Asian J. Control, Vol. 20, No. 1, pp. 403- 414 (2018). · Zbl 1391.93112
[52] Shukla, M. K., and B. B. Sharma, “ Control and synchronization of a class of uncertain fractional order chaotic systems via adaptive backstepping control,” Asian J. Control, Vol. 20, No. 2, pp. 707- 720 (2018). · Zbl 1390.93454
[53] Xiao, M., G. Jiang, W. X. Zheng, S. Yan, Y. Wan, and C. Fan, “ Bifurcation control of a fractional‐order van der pol oscillator based on the state feedback,” Asian J. Control, Vol. 17, No. 5, pp. 1756- 1766. · Zbl 1333.93120
[54] Pham, V., S. Kingni, C. Volos, S. Jafari, and T. Kapitaniak, “ A simple three‐dimensional fractional‐order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization,” Int. J. Electron. and Commun., Vol. 78, pp. 220- 227 (2017).
[55] El‐Wakil, S. A., and E. M. Abulwafa, “ Formulation and solution of space – time fractional Boussinesq equation,” Nonlinear Dyn., Vol. 80, No. 1-2, pp. 167- 175 (2015).
[56] Balthazar, J., A. Tusset, and A. Bueno, “ TM‐AFM nonlinear motion control with robustness analysis to parametric errors in the control signal determination,” J. Theoretical and Appl. Mech., Vol. 52, No. 1, pp. 93- 106 (2014).
[57] Tusset, A. M., J. M. Balthazar, D. G. Bassinello, B. R. de Pontes Jr., and J. L. Palacios Felix, “ Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb‐drive actuator,” Nonlinear Dyn., Vol. 69, No. 4, pp. 1837- 1857 (2012). · Zbl 1263.93105
[58] Nozaki, R., J. M. Balthazar, A. M. Tusset, B. Rodrigues de Pontes Jr, and Á. M. Bueno, “ Nonlinear control system applied to atomic force microscope including parametric errors,” J. Control, Autom. and Elect. Syst., Vol. 24, No. 3, pp. 223- 231 (2013).
[59] Janzen, F. C., A. M. Tusset, and J. M. Balthazar, “ Positioning control of a flexible slewing structure by applying sliding mode control,” ASME Proc., 28th Conf on Mech. Vibration and Noise, Charlotte, North Carolina, USA. Paper No. DETC2016‐59363, 7 pages (2016). https://doi.org/10.1115/DETC2016‐59363.
[60] Tusset, A. M., V. Piccirillo, A. M. Bueno, et al., “ Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker,” J. Vibr. Control, Vol. 22, No. 11, pp. 3621- 3637 (2015).
[61] Peruzzi, N. J., F. R. Chavarette, J. M. Balthazar, A. M. Tusset, A. L. P. M. Perticarrari, and R. M. F. L. Brasil, “ The dynamic behavior of a parametrically excited time‐periodic MEMS taking into account parametric errors,” J. Vibr. Control, Vol. 22, No. 20, pp. 4101- 4110 (2015). · Zbl 1373.93132
[62] Wu, Z., P. Shi, H. Su, and J. Chu, “ Sampled‐data synchronization of chaotic Lur”e systems with time delays,” IEEE Trans. Neural Netw. Learn. Syst., Vol. 24, No. 3, pp. 410- 421 (2013).
[63] Wu, Z. G., P. Shi, H. Su, and J. Chu, “ Local synchronization of chaotic neural networks with sampled‐data and saturating actuators,” IEEE T. Cybern., Vol. 44, No. 12, pp. 2635- 2645 (2014).
[64] Wu, Y. Q., H. Su, and Z. G. Wu, “ Asymptotical synchronization of chaotic Lur”e systems under time‐varying sampling,” Circuits, Syst., and Signal Processing, Vol. 33, pp. 699 (2014).
[65] Xu, C., and Q. Zhang, “ On the chaos control of the Qi system,” J Eng. Math., Vol. 90, pp. 67- 81 (2015). · Zbl 1374.34239
[66] Yang, J., and L. Zhao, “ Bifurcation analysis and chaos control of the modified Chua”s circuit system,” Chaos, Solutions Fractals, Vol. 77, pp. 332- 339 (2015). · Zbl 1353.34089
[67] Xu, C., and Y. Wu, “ Bifurcation and control of chaos in a chemical system,” Appl. Math. Model., (2014). https://doi.org/10.1016/j.apm.2014.10.030. · Zbl 1443.92206
[68] Cai, P., and Z. Z. Yuan, “ Hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy,” Chin. J. Phys., Vol. 55, pp. 64- 70 (2017). https://doi.org/10.1016/j.cjph.2016.12.002. · Zbl 1539.34065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.