×

A parallel fully coupled implicit domain decomposition method for numerical simulation of microfluidic mixing in 3D. (English) Zbl 1273.76008

Summary: A parallel fully coupled implicit fluid solver based on a Newton-Krylov-Schwarz algorithm is developed on top of the Portable, Extensible Toolkit for Scientific computation for the simulation of microfluidic mixing described by the three-dimensional unsteady incompressible Navier-Stokes equations. The popularly used fractional step method, originally designed for high Reynolds number flows, requires some modification of the inviscid-type pressure boundary condition in order to reduce the divergence error near the wall. On the other hand, the fully coupled approach works well without any special treatment of the boundary condition for low Reynolds number microchannel flows. A key component of the algorithm is an additive Schwarz preconditioner, which is used to accelerate the convergence of a linear Krylov-type solver for the saddle-point-type Jacobian systems. As a test case, we carefully study a three-dimensional passive serpentine micromixer and report the parallel performance of the algorithm obtained on a parallel machine with more than one hundred processors.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65H10 Numerical computation of solutions to systems of equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

PETSc; CUBIT
Full Text: DOI

References:

[1] DOI: 10.1039/b903687c · doi:10.1039/b903687c
[2] Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L. C., Smith, B. and Zhang, H. 2011. ”PETScWebpage”. Available athttp://www.mcs.anl.gov/petsc.
[3] DOI: 10.1016/j.jcp.2009.10.001 · Zbl 1253.76137 · doi:10.1016/j.jcp.2009.10.001
[4] DOI: 10.1016/S0925-4005(01)00851-6 · doi:10.1016/S0925-4005(01)00851-6
[5] DOI: 10.1016/j.parco.2008.11.003 · doi:10.1016/j.parco.2008.11.003
[6] DOI: 10.1016/j.jcp.2004.10.031 · Zbl 1060.82001 · doi:10.1016/j.jcp.2004.10.031
[7] DOI: 10.1137/S1064827596304046 · Zbl 0917.76035 · doi:10.1137/S1064827596304046
[8] DOI: 10.1007/s10404-010-0667-3 · doi:10.1007/s10404-010-0667-3
[9] Cubit. Online CUBIT user’s manual, 2011. Available at http://cubit.sandia.gov/documentation.html.
[10] Dennis J., SIAM, Philadelphia (1996)
[11] DOI: 10.1016/S0045-7825(02)00603-5 · Zbl 1091.76521 · doi:10.1016/S0045-7825(02)00603-5
[12] Du Y., Biomicrofluidics 4 (2010)
[13] DOI: 10.1016/0045-7825(92)90041-H · Zbl 0765.76048 · doi:10.1016/0045-7825(92)90041-H
[14] DOI: 10.1016/0045-7825(92)90143-8 · Zbl 0759.76040 · doi:10.1016/0045-7825(92)90143-8
[15] DOI: 10.1016/j.compfluid.2007.07.014 · Zbl 1237.76083 · doi:10.1016/j.compfluid.2007.07.014
[16] DOI: 10.1016/j.ces.2004.11.033 · doi:10.1016/j.ces.2004.11.033
[17] DOI: 10.1016/j.cej.2010.05.056 · doi:10.1016/j.cej.2010.05.056
[18] Hwang F.-N., Electron. Trans. Numer. Anal. 22 pp 146– (2006)
[19] Hwang F.-N., J. Chin. Soc. Mech. Eng. 31 pp 199– (2010)
[20] DOI: 10.1007/s10404-007-0206-z · doi:10.1007/s10404-007-0206-z
[21] Karniadakis G., Microflows and Nanoflows: Fundamentals and Simulation (2005)
[22] Karypis, G. 2011. ”METIShomepage”. Available athttp://cubit.sandia.gov/documentation.html.
[23] Li L., J. Micromech. Microeng. 20 (2010)
[24] DOI: 10.1109/84.846699 · doi:10.1109/84.846699
[25] DOI: 10.1016/j.compfluid.2003.07.004 · Zbl 1046.76015 · doi:10.1016/j.compfluid.2003.07.004
[26] DOI: 10.1002/nla.381 · Zbl 1114.65112 · doi:10.1002/nla.381
[27] DOI: 10.1088/0960-1317/15/2/R01 · doi:10.1088/0960-1317/15/2/R01
[28] DOI: 10.1016/j.jcp.2007.02.027 · Zbl 1343.76049 · doi:10.1016/j.jcp.2007.02.027
[29] ParaView.ParaViewhomepage, 2011. Available at http://www.paraview.org.
[30] Park J., J. Micromech. Microeng. 20 (2010)
[31] DOI: 10.1137/1.9780898718003 · doi:10.1137/1.9780898718003
[32] DOI: 10.1137/0907058 · Zbl 0599.65018 · doi:10.1137/0907058
[33] DOI: 10.1007/s10404-007-0238-4 · doi:10.1007/s10404-007-0238-4
[34] Smith B., Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996) · Zbl 0857.65126
[35] DOI: 10.1126/science.1066238 · doi:10.1126/science.1066238
[36] DOI: 10.1007/s10404-007-0207-y · doi:10.1007/s10404-007-0207-y
[37] Tafti E., Appl. Phys. Lett. 93 (2008)
[38] Toselli A., Domain Decomposition Methods – Algorithms and Theory (2005) · Zbl 1069.65138 · doi:10.1007/b137868
[39] DOI: 10.1007/s10404-008-0287-3 · doi:10.1007/s10404-008-0287-3
[40] DOI: 10.1137/080727348 · Zbl 1410.76309 · doi:10.1137/080727348
[41] DOI: 10.1016/S0924-4247(01)00654-9 · doi:10.1016/S0924-4247(01)00654-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.