×

Modelling transient heat conduction in solids at multiple length and time scales: a coupled non-equilibrium molecular dynamics/continuum approach. (English) Zbl 1175.82039

Summary: A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It works by regulating the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. Three thermostats are investigated: the global deterministic Nosé-Hoover thermostat and two local stochastic thermostats, Langevin and stadium damping. The latter thermostat is introduced to avoid the adverse reflection of phonons that occurs at an abrupt interface. The method is then extended to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of large steady state and transient heat conduction problems. The effectiveness of the algorithm is demonstrated for the example of heat flow down a three-dimensional atomistic rod of uniform cross-section subjected to a variety of boundary conditions.

MSC:

82C21 Dynamic continuum models (systems of particles, etc.) in time-dependent statistical mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
93B52 Feedback control
Full Text: DOI

References:

[1] Broughton, J. Q.; Abrahams, F. F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 2391 (1999)
[2] Curtin, W. A.; Miller, R. E., Atomistic/continuum coupling in computational materials science, Modell. Simul. Mater. Sci. Eng., 11, R33-R68 (2003)
[3] Gill, S. P.A.; Jia, Z.; Leimkuhler, B.; Cocks, A. C.F., Rapid thermal equilibration in coarse-grained molecular dynamics, Phys. Rev. B, 73, 184304 (2006)
[4] Li, X.; Weinan, W. E., Variational boundary conditions for molecular dynamics simulations of solids at low temperature, Commun. Comp. Phys., 1, 135-175 (2006) · Zbl 1114.74326
[5] Li, X.; Weinan, W. E., Multiscale modelling of the dynamics of solids at finite temperature, J. Mech. Phys. Solids, 53, 1650-1685 (2005) · Zbl 1120.74313
[6] Liu, W. K.; Karpov, E. G.; Zhang, S.; Park, H. S., An introduction to computational nanomechanics and materials, Comput. Meth. Appl. Mech. Eng., 193, 1529 (2004) · Zbl 1079.74506
[7] Liu, W. K.; Park, H. S.; Qian, D.; Karpov, E. G.; Kadowaki, H.; Wagner, G. J., Bridging scale methods for nanomechanics and materials, Comput. Meth. Appl. Mech. Eng., 195, 1407-1421 (2006) · Zbl 1116.74048
[8] Park, H. S.; Liu, W. K., An introduction and tutorial on multiple-scale analysis in solids, Comput. Meth. Appl. Mech. Eng., 193, 1733-1772 (2004) · Zbl 1079.74508
[9] Park, H. S.; Karpov, E. G.; Liu, W. K., A temperature equation for coupled atomistic/continuum simulations, Comput. Meth. Appl. Mech. Eng., 193, 1713-1732 (2004) · Zbl 1079.74507
[10] Qu, S.; Shastry, V.; Curtin, W. A.; Miller, R. E., A finite temperature dynamic coupled atomistic/discrete dislocation method, Modell. Simul. Mater. Sci., 13, 1101 (2005)
[11] Rudd, R. E.; Broughton, J. Q., Concurrent coupling of length scales in solid state systems, Phys. State Solid, B217, 5893 (2000)
[12] Shilkrot, L. E.; Miller, R. E.; Curtin, W. A., Multiscale plasticity modelling: coupled atomistic and discrete dislocation mechanics, J. Mech. Phys. Solids, 52, 755-787 (2004) · Zbl 1049.74015
[13] Xiao, S. P.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Meth. Appl. Mech. Eng., 193, 1645-1669 (2004) · Zbl 1079.74509
[14] W.K. Liu, E.G. Karpov, H.S. Park, Personal communication.; W.K. Liu, E.G. Karpov, H.S. Park, Personal communication.
[15] Dupuy, L. M.; Tadmor, E. B.; Miller, R. E.; Phillips, R., Finite-temperature quasicontinuum: molecular dynamics without all the atoms, Phys. Rev. Lett., 95, 060202 (2005)
[16] Bhowmick, S.; Shenoy, V. B., Effect of strain on the thermal conductivity of solids, J. Chem. Phys., 125, 164513 (2006)
[17] Heino, P., Thermal conductivity and temperature in solid argon by non-equilibrium molecular dynamics simulations, Phys. Rev. B, 71, 144302 (2005)
[18] Huang, Z.; Tang, Z., Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity, Physica B, 373, 291-296 (2006)
[19] Lepri, S.; Livi, R.; Politi, A., Energy transport in anharmonic lattices close to and far from equilibrium, Physica D, 119, 140-147 (1998)
[20] Lepri, S.; Livi, R.; Politi, A., Thermal conduction in classical low-dimensional lattices, Phys. Rep., 377, 1 (2003)
[21] Prasher, R., Diffraction limited phonon thermal conductance of nanoconstrictions, Appl. Phys. Lett., 91, 143119 (2007)
[22] Schelling, P. K.; Phillpot, S. R.; Keblinski, P., Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B, 65, 144306 (2002)
[23] Segal, D.; Nitzan, A., Thermal conductance through molecular wires, J. Chem. Phys., 119, 13, 6840 (2003)
[24] Watanabe, T.; Ni, B.; Phillpot, S. R., Thermal conductance across grain boundaries in diamond from molecular dynamics simulation, J. Appl. Phys., 102, 063503 (2007)
[25] Terao, T.; Muller-Plathe, F., A non-equilibrium molecular dynamics method for thermal conductivities based on thermal noise, J. Chem. Phys., 122, 081103 (2005)
[26] Rahman, A., Correlations in the motion of atoms in liquid argon, Phys. Rev., 136, 2A (1964)
[27] Verlet, L., Computer “experiments” on classical fluids i thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 1, 98 (1967)
[28] Binder, K.; Horbach, J.; Kob, W.; Paul, W.; Varnik, F., Molecular dynamics simulation, J. Phys.: Condens. Matter, 16, S429-S4543 (2004)
[29] Hoover, W. M.G.; Aoki, K.; Hoover, C. G.; De Groot, S. V., Time-reversible deterministic thermostats, Physica D, 187, 253-267 (2004) · Zbl 1054.80009
[30] Hook, J. R.; Hall, H. E., Solid State Physics (1991), J. Wiley & Sons Ltd.
[31] Holian, B. L.; Ravelo, R., Fracture simulations using large-scale molecular-dynamics, Phys. Rev. B., 51, 11275-11288 (1995)
[32] Ren, W., Analytical and numerical study of coupled atomistic-continuum methods for fluids, J. Comp. Phys., 227, 1353-1371 (2007) · Zbl 1126.76046
[33] Liu, J.; Chen, S.; Nie, X.; Robbins, M. O., A continuum-atomistic simulation of heat transfer in micro-and nano-flows, J. Comp. Phys., 227, 279-291 (2007) · Zbl 1130.80010
[34] Flekkoy, E. G.; Delgado-Buscalioni, R.; Coveney, P. V., Flux boundary conditions in particle simulations, Phys. Rev. B, 72, 026703 (2005)
[35] Werder, T.; Walther, J. H.; Koumoutsakos, P., Hybrid atomistic-continuum method for the simulation of dense fluid flows, J. Comp. Phys., 205, 373-390 (2005) · Zbl 1087.76542
[36] Quigley, D.; Probert, M., Langevin dynamics in constant pressure extended systems, J. Chem. Phys., 120, 11432 (2004)
[37] Chen, G.; Borca-Tasciuc, D.; Yang, R. G., Nanoscale Heat Transfer, Encyclopedia of Nanoscience and Nanotechnology (2004), American Scientific Publishers
[38] Huang, W.; Huang, G.; Wang, L.; Huang, B., Phonon-cavity-enhanced low temperature thermal conductance of a semiconductor nanowire with narrow constrictions, Phys. Rev. B, 75, 233415 (2007)
[39] Tian, W.; Yang, R., Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites, Appl. Phys. Lett., 90, 263105 (2007)
[40] Wang, J., Quantum thermal transport from classical molecular dynamics, Phys. Rev. Lett., 99, 160601 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.